

Travere Therapeutics R&D Day 2020

December 9, 2020

Jonathan Hogan, M.D.

Assistant Professor of Medicine Perelman School of Medicine, University of Pennsylvania, & Clinical Director, Penn Glomerular Center

Jonathan Barratt, Ph.D. FRCP

Mayer Professor of Renal Medicine at the University of Leicester & John Walls Renal Unit, Leicester

Eric Dube, Ph.D. *Chief Executive Officer at Travere Therapeutics*

William Rote, Ph.D. Senior Vice President of Research and Development at Travere Therapeutics

Noah Rosenberg, M.D. Chief Medical Officer at Travere Therapeutics

Peter Heerma *Chief Commercial Officer at Travere Therapeutics*

This presentation contains forward-looking statements, including statements about our prospects, products, growth projections, competitive position, potential regulatory filings and agency actions, and the anticipated development, timing, data readouts and therapeutic scope of programs in our clinical pipeline. These forward-looking statements may be accompanied by such words as "anticipate," "believe," "estimate," "expect," "forecast," "intend," "may," "plan," "project," "target," "will" and other words and terms of similar meaning. You should not place undue reliance on these statements.

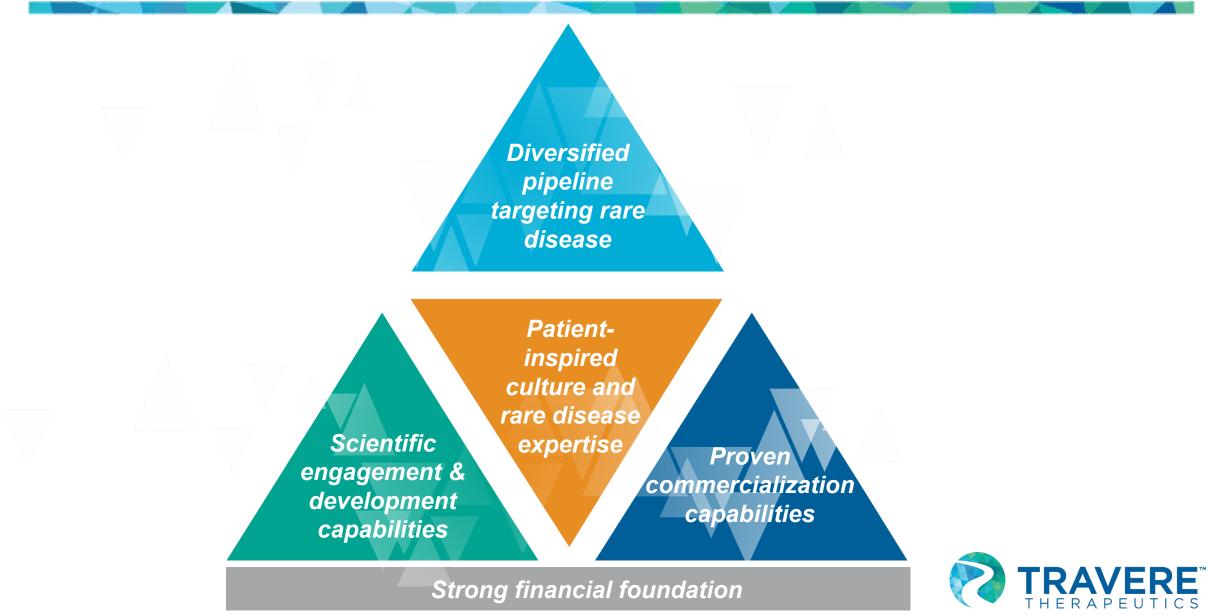
These statements involve risks and uncertainties that could cause actual results to differ materially from those reflected in such statements, including the safety and efficacy of our product candidates, product competition, market acceptance, the occurrence of adverse safety events with our products or product candidates, clinical trials risk, adverse market and economic conditions, regulatory uncertainty, our dependence on collaborations and other third parties over which we may not always have full control, failure to comply with government regulation, our ability to protect our intellectual property rights, and have sufficient rights to market our products and services together with the cost of doing so, problems with our manufacturing processes and our reliance on third parties, the potential impact of the ongoing COVID-19 pandemic, our ability to attract and retain qualified personnel, our level of indebtedness, environmental risks, change of control provisions in our collaborations and the other risks and uncertainties that are described in the Risk Factors section of our most recent annual or quarterly report and in other reports we have filed with the SEC.

These statements are based on our current beliefs and expectations and speak only as of the date of this presentation. We do not undertake any obligation to publicly update any forward-looking statements.

Perspectives from the Nephrology Community

Rare kidney patients deserve better.

rarekidneyrevolution.com


© 2020 Travere Therapeutics, Inc.

Bringing Travere Therapeutics to Life

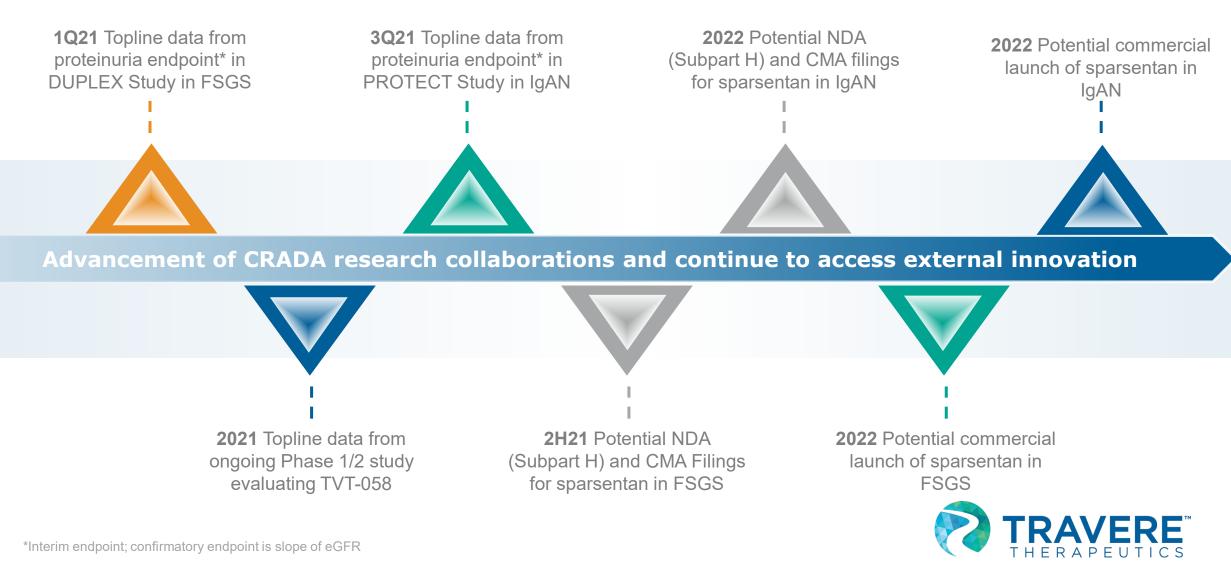
Key Strengths of Travere Therapeutics

Leveraging an Established Leadership Position to Make a Difference

\int		
	c Al	
	<u>ديــــا</u>	
	╙━┣║	
Ľ		ļ

Driving earlier diagnosis to allow people to focus on life rather than their disease Championing broad access to therapies and the diverse needs of people living with rare disease

Pioneering new paths to therapeutics for unmet needs in rare renal, hepatology and metabolism


Pipeline of Potential First-in-Class Programs Targeting Rare Diseases

PROGRAM	THERAPEUTIC AREA	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3
Sparsentan	Focal Segmental Glomerulosclerosis (FSGS)				
Sparsentan	IgA Nephropathy (IgAN)				
CDCA*	Cerebrotendinous Xanthomatosis (CTX)				
TVT-058 ^{**}	Classical Homocystinuria (HCU)				
NGLY1 Collaboration	NGLY1 Deficiency				
ALGS Collaboration	Alagille Syndrome (ALGS)				

*CDCA is not indicated for CTX but has received a medical necessity determination in the US by the FDA for CTX. Travere Therapeutics is conducting a Phase 3 clinical trial to examine the safety and efficacy of CDCA (Chenodal®) for the treatment of CTX. **TVT-058 is currently in a Phase 1/2 clinical study.

Path to Potential Breakthrough Growth for Travere Therapeutics

Patient-Inspired Urgency

FSGS Disease State Overview

Jonathan Hogan, MD Assistant Professor of Medicine Perelman School of Medicine, University of Pennsylvania Clinical Director, Penn Glomerular Center

Disclosures

Advisory board: ZyVersa Therapeutics

Consultant (last 12 months): Retrophin, GSK, Alexion, Calliditas, Aurinia, Kezar Life Sciences

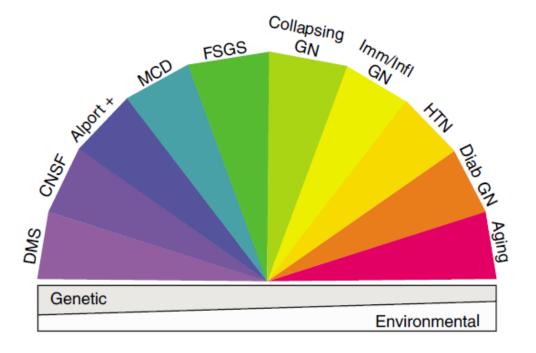
Salary support for clinical trials: Retrophin, Alexion, Calliditas, Omeros, Complexa, GSK, Gilead, Boehringer Ingelheim, Regeneron, NIH

Royalties: up to date (Calcium/Phosphorous, MGRS)

Outline

Defining FSGS

Epidemiology and pathophysiology of FSGS


Impact of FSGS on kidney health

Goals of treatment in FSGS

Globally, Glomerular Disease is a Leading Cause of CKD and ESKD

- Several different diseases can result in glomerular disease
- Podocyte dysfunction caused by genetic and/or environmental factors is central to the development of glomerular disease

The spectrum of podocyte diseases

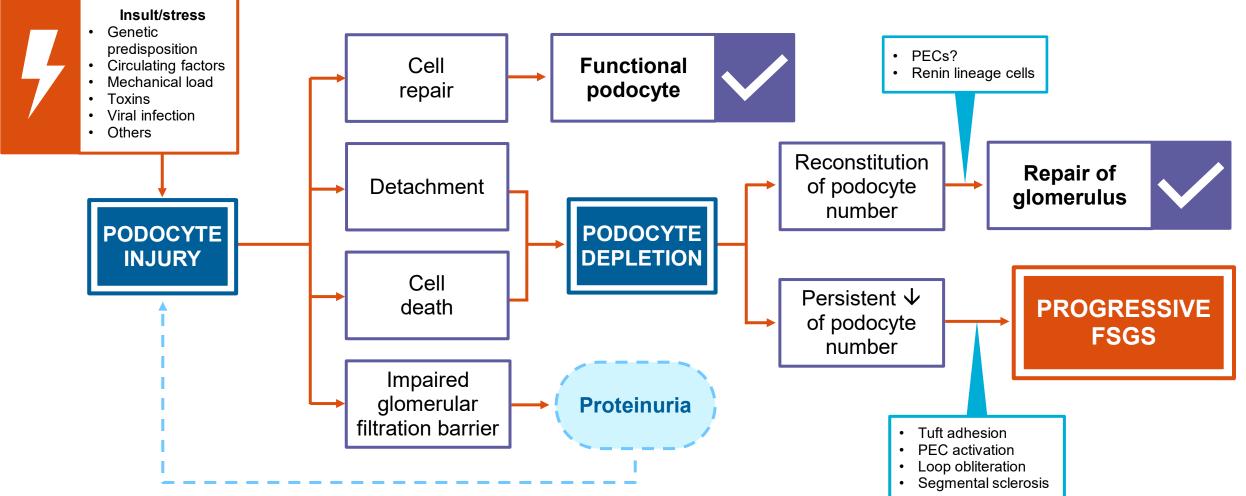
What is FSGS? Focal Segmental Glomerulosclerosis (FSGS) is a Rare Glomerular Disorder

Defined as a histologic pattern that is characteristic of various underlying etiologies¹

Multiple classification systems:⁴

- By Histopathologic Lesion
- By Clinical Presentation (e.g. with and without Nephrotic Syndrome)
- By Limited Understanding of Biology (e.g. Primary, Genetic, Secondary, Unknown Cause)

Sclerotic lesions form that are:³

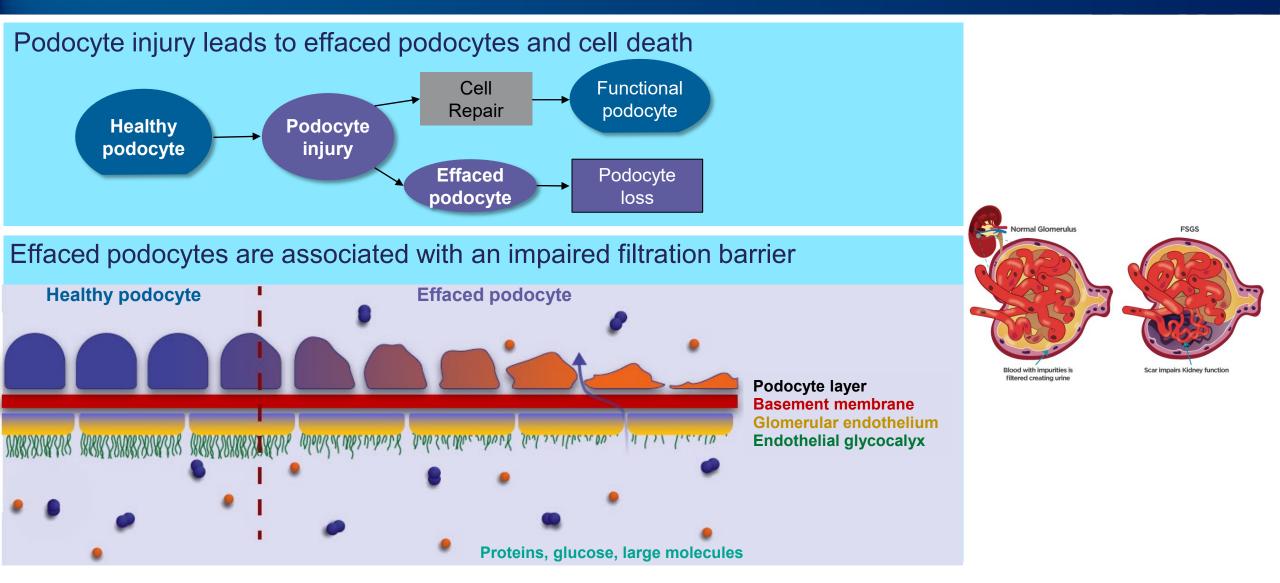


1. Rosenberg AZ & Kopp JB. Clin J Am Soc Nephrol 2017; **12:**502–517; 2. D'Agati VD, et al. N Engl J Med 2011; **365:**2398–2411;

3. Jefferson JA & Shankland SJ. Adv Chronic Kidney Dis 2014; 21:408–416; 4. KDIGO Clinical Practice Guideline on Glomerular Diseases (Public review draft - June 2020).

Available at: https://kdigo.org/wp-content/uploads/2017/02/KDIGO-GN-GL-Public-Review-Draft_1-June-2020.pdf [accessed September 2020]

FSGS is Caused by a Continuous and Sustained Podocyte Injury


PEC = parietal epithelial cell.

1. Jefferson JA & Shankland SJ. Adv Chronic Kidney Dis 2014; 21:408–416; 2. De Vriese AS, et al. J Am Soc Nephrol 2018; 29:759–774;

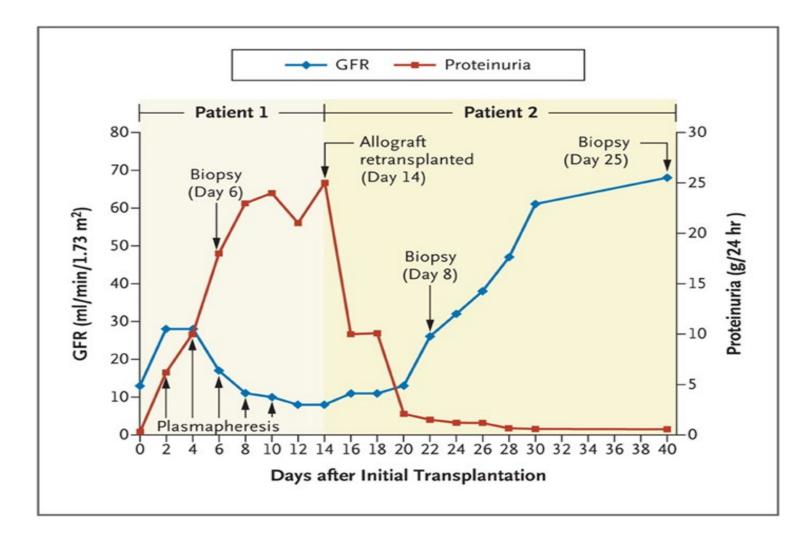

3. Wiggins, et al. J Am Soc Nephrol 2013 24(12):2081-95

Image reproduced with permission: Jefferson JA & Shankland SJ. Adv Chronic Kidney Dis 2014; 21:408–416.

Podocyte Pathophysiology in FSGS

A Picture is Worth...

Epidemiology

FSGS is the leading glomerular cause of ESKD in the United States¹

FSGS global incidence is estimated as² 0.1/100,000 in children

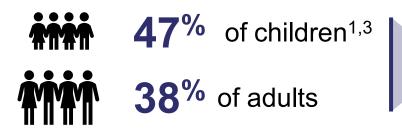
0.8/100,000 in adults

Incidence of primary FSGS has increased by **3- to 13-fold** during the last 20-30 years³

Incidence in adults is almost equal to that of IgA nephropathy and twice that of membranous glomerulonephritis³

Relative to other glomerular diseases, the **prevalence** of FSGS appears to be **increasing**¹

Of all nephrotic syndrome cases, FSGS is the cause in: ~20% 40% if if if if it is the cause in: of children of adults



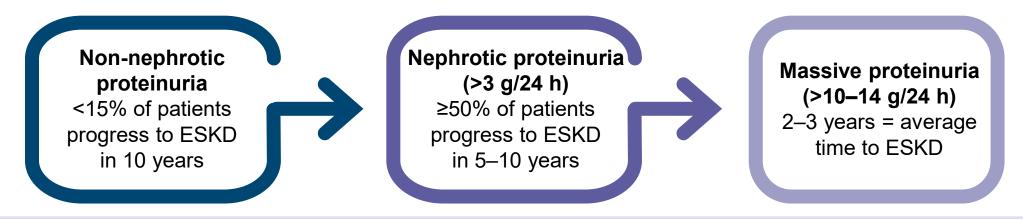
Biopsy results for evaluation of idiopathic nephrotic syndrome have shown that FSGS is seen in up to **80%** in African American patients³

Unmet Needs in FSGS

50% of patients with **severe nephrotic syndrome** progress to **renal failure** at **1,000 days** after diagnosis¹

FSGS is associated with a **50% risk** for **end-stage kidney disease (ESKD)** within **5 years of diagnosis** if patients do not achieve **partial or complete remission**²

Do not respond to currently available therapies²


Current therapeutic strategies are **limited** and include ACE-I's, ARBs, calcineurin inhibitors and steroids. There remains an **unmet need** for treatment options approved specifically for FSGS.

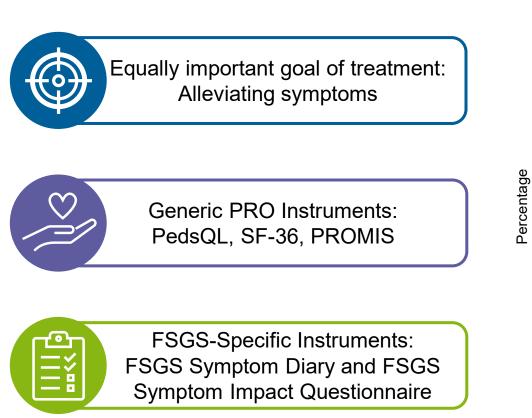
ACE-I = Angiotensin-converting enzyme inhibitor; ARB = Angiotensin II receptor blocker.
1. Gipson D. Semin Nephrol. 2016; 36(6):453-459. 2. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group.
KDIGO Clinical Practice Guideline for Glomerulonephritis. *Kidney Inter., Suppl.* 2012; 2: 139–274. 3.Gipson D, et al. *Pediatr Nephrol.* 2006;21:344–349.

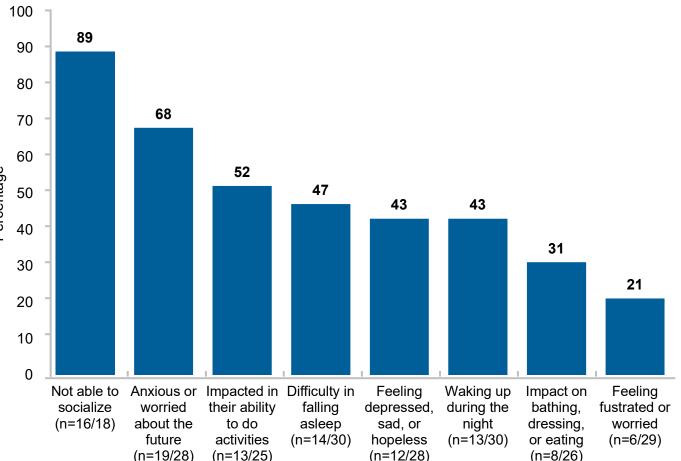
Why is it important to treat FSGS-associated glomerular disease? Treating FSGS-Associated Glomerular Disease is Important in Slowing the Progression to ESKD¹

The severity of proteinuria is associated with risk of developing ESKD²

Patients with FSGS and persistent proteinuria are at increased risk of progressive CKD and CV morbidity/mortality

Remission of proteinuria is widely regarded as beneficial in slowing the progression of FSGS³

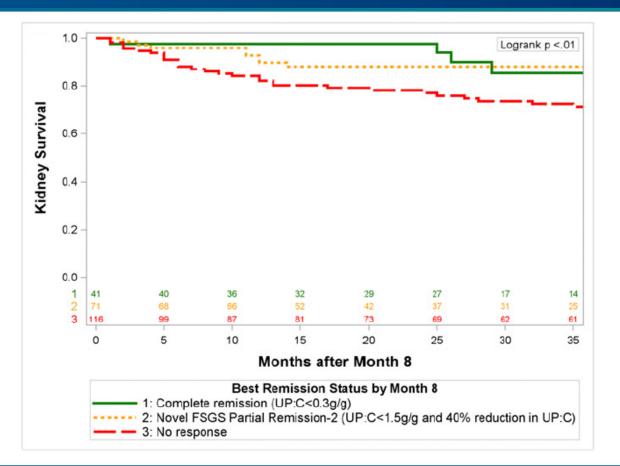

The short-term goal of therapy is to induce a **complete or partial remission of proteinuria**


CKD = chronic kidney disease; CV = cardiovascular; ESKD = end-stage kidney disease.

1. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int Suppl 2012; 2:139–274;

2. Korbet SM. J Am Soc Nephrol 2012; 23:1769–1776; 3. D'Agati VD, et al. N Engl J Med 2011; 365:2398–2411.

Patient Reported Outcomes in FSGS



PedsQL = Pediatric Quality of Life Inventory; PRO = patient reported outcome; PROMIS = Patient Reported Outcomes Measurement Information System.

Mathias SD, et al. Am J Kidney Disease, 2017: 70:532-540.

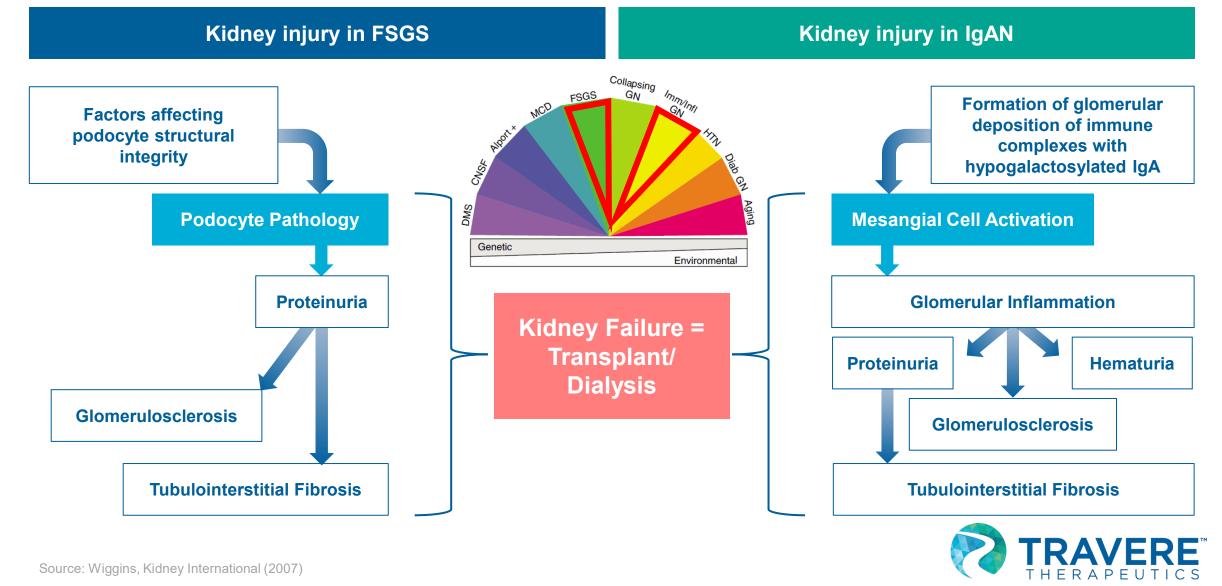
FSGS Partial Remission of Proteinuria Endpoint - a Robust Correlate of Kidney Survival in Patients with Primary FSGS

Data from five independent cohorts totaling 466 patients with primary FSGS were analyzed and established that achieving a modified partial remission of proteinuria endpoint of <1.5 g/g accompanied with at least a 40% reduction in proteinuria was a robust correlate of kidney survival

Treatment Strategies for FSGS

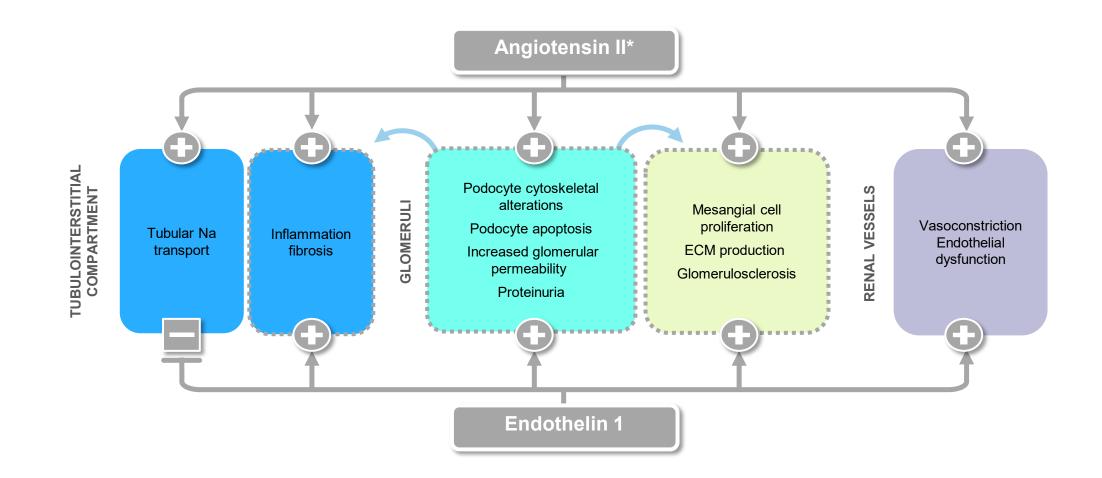
- In the absence of an approved therapy specifically indicated for FSGS, current treatment strategies are limited to:
 - Renin-angiotensin system blockade (ACEIs, ARBs, MRBs)
 - Blood pressure control
 - Immunosuppression (in cases of proposed "primary/idiopathic" FSGS)
 - Extracorporeal therapies: Plasma exchange therapy, LDL apharesis
 - > Management of complications of CKD and nephrotic syndrome
 - Lipid lowering agents
 - > Diuretics
 - Anticoagulation in some cases

Conclusions


- FSGS is a histologic pattern associated caused by podocyte injury, which ultimately results in impaired glomerular filtration barrier function and proteinuria
- FSGS is an important cause of chronic kidney disease and end stage kidney disease
- The pathogenesis of FSGS is heterogeneous, involving genetic causes, "secondary" stresses, and circulating factors
- The main goal of treatment in FSGS is to reduce proteinuria (complete remission, FSGS partial remission of proteinuria) in order to improve long-term kidney outcomes
- Treatment of FSGS depends on the underlying pathogenesis, and may involve renin-angiotensin system blockade and immunosuppressive agents
- There remains a significant unmet need for safe and effective treatments for FSGS

Sparsentan - A Potential First-in-Class Molecule

Bill Rote, PhD – Head of Research and Development



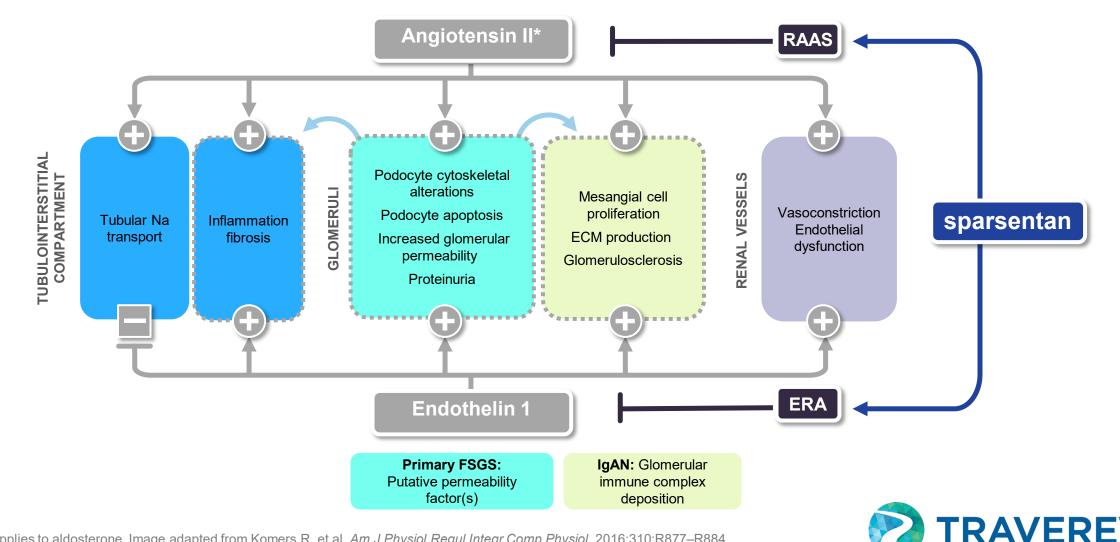
FSGS and IgAN Share Common Renal Injury Pathways

© 2020 Travere Therapeutics, Inc.

Endothelin 1 and Angiotensin II Signaling Pathways Play Fundamental Roles in Several Kidney Diseases

*Also applies to aldosterone. Image adapted from Komers R. et al. *Am J Physiol Regul Integr Comp Physiol.* 2016;310:R877–R884. ECM, extracellular matrix; ERA, endothelin receptor antagonist; FSGS, focal segmental glomerulosclerosis; IgAN, immunoglobulin A nephropathy; RAAS, renin-angiotensin-aldosterone system.

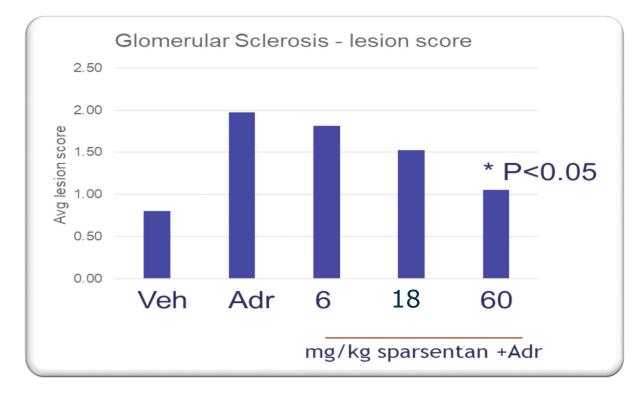
© 2020 Travere Therapeutics, Inc.


Sparsentan is a Potential First-in-Class Molecule Designed to Selectively Inhibit the Endothelin Receptor and Angiotensin II Receptor

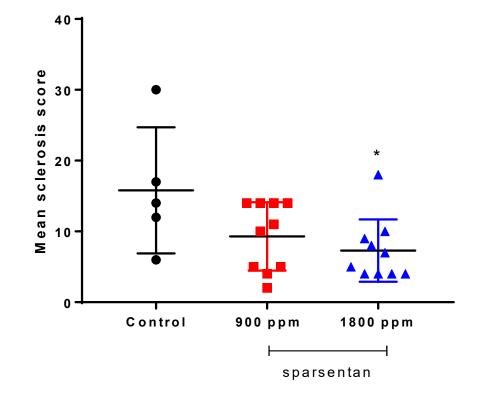
- Sparsentan is an investigational product candidate designed to inhibit both endothelin receptor type A (ET_A) and angiotensin II receptor type 1 (AT₁)¹⁻³
- Distinct selectivity profile: high affinity selective antagonist at both the ET_A and AT_1 receptors; highly selective ET_A/ET_B
- Has shown nephroprotective properties across pre-clinical studies in both FSGS and IgAN
- Sparsentan has been granted orphan drug designation for the treatment of FSGS by the FDA and European Commission

Source: 1. Kowala MC, et al. *J Pharmacol Exp Ther*. 2004;309:275–284., 2. Komers R, et al. *Am J Physiol Regul Integr Comp Physiol*. 2016: 310 (10): R877-884., 3. Benigni A, et al. *Pediatr Nephrol* 2020. https://doi.org/10.1007/s00467-020-04518-2

Sparsentan Acts by Inhibiting the Signaling Pathways Present in FSGS and IgAN



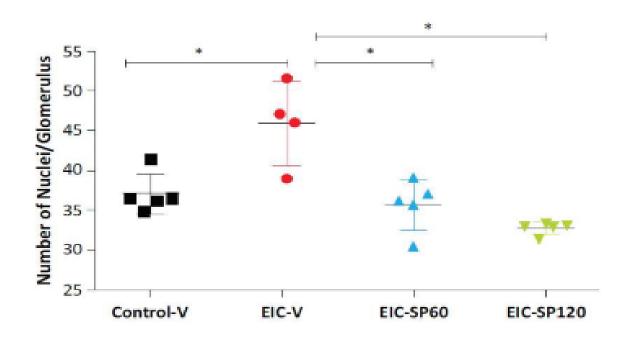
*Also applies to aldosterone. Image adapted from Komers R. et al. *Am J Physiol Regul Integr Comp Physiol.* 2016;310:R877–R884. ECM, extracellular matrix; ERA, endothelin receptor antagonist; RAAS, renin-angiotensin-aldosterone system.

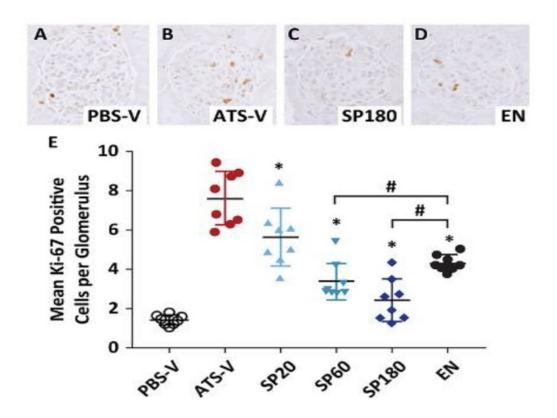

© 2020 Travere Therapeutics, Inc.

Preclinical Demonstration of Prevention of Glomerulosclerosis

FSGS Rat Model

IgAN gddY Mouse Model

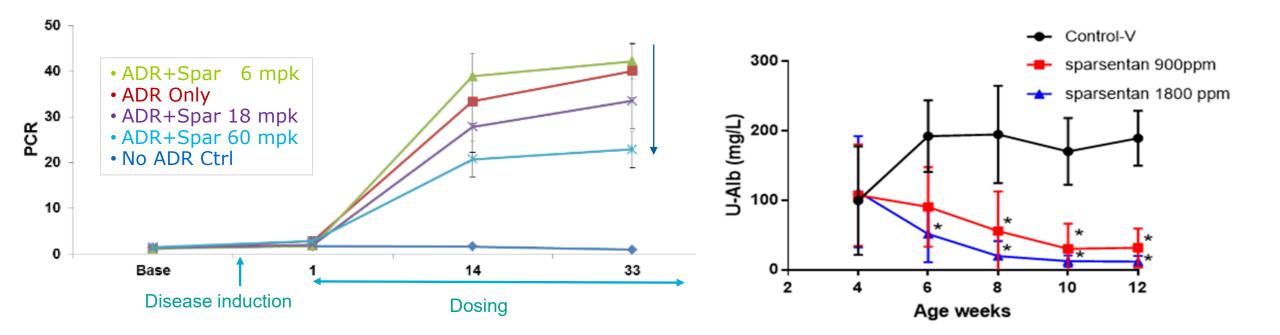



Source: Adriamycin rat FSGS model: RE-021-Report0034-PHARM; gddY Model: RE-021-Report054-2018-PHARM; presented as e-poster ERA-EDTA 2020

Preclinical Demonstration of Prevention of Mesangial Cell Proliferation

Engineered Immune Complex (EIC) - induced IgAN Model

Anti-Thy1 Model

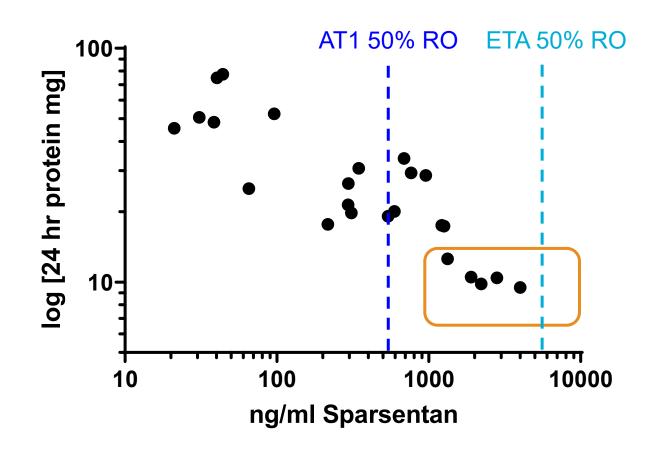


Source: EIC Model: RE-021-Report004-2018-PHARM; presented as poster WCN 2019 Anti-Thy1 Model: Jenkinson, et.al. (2018) 15th International Symposium on IgA Nephropathy, Buenos Aires. Argentina

Preclinical Demonstration of Proteinuria Reduction

FSGS Rat Model

IgAN gddY Mouse Model



Source: Adriamycin rat FSGS model: RE-021-Report0034-PHARM; gddY Model: RE-021-Report054-2018-PHARM; presented as e-poster ERA-EDTA 2020

© 2020 Travere Therapeutics, Inc.

Inhibition of Both AT₁ and ET_a Together Results in Further Proteinuria Reduction in Rat Models

- In vitro receptor binding in Rats
 - AT1 Ki = 11 nM
 - ETA Ki = 110 nM
- Sparsentan circulates bound to protein, hence 10x Ki concentration results in ~50% receptor occupancy
- Maximum efficacy is observed with significant inhibition of ETA receptors

Source: RE-021-0045; RE-021-0057, RE-021-Report003-2018-PHARM; RE-021-Report007-2018-BIOA

The Clinical Path to Shaping the Treatment Paradigm for FSGS

Noah Rosenberg, MD – Chief Medical Officer

Overview of Sparsentan Clinical Programs for FSGS

DUET: Randomized, double-blind, safety and efficacy study of sparsentan in primary or genetic FSGS

Phase 2 study sparsentan vs irbesartan 8-week blinded trial followed by

an open-label extension period

DUPLEX clinicaltrials.gov ID: NCT03493685; DUPLEX clinicaltrialsregister.eu number: 2016-005141-23. Komers R, et al. Kidney Int Rep 2020; **5**:494–502; DUPLEX Protocol ID: 021FSGS16010. DUPLEX: Study of sparsentan in patients with primary or genetic FSGS

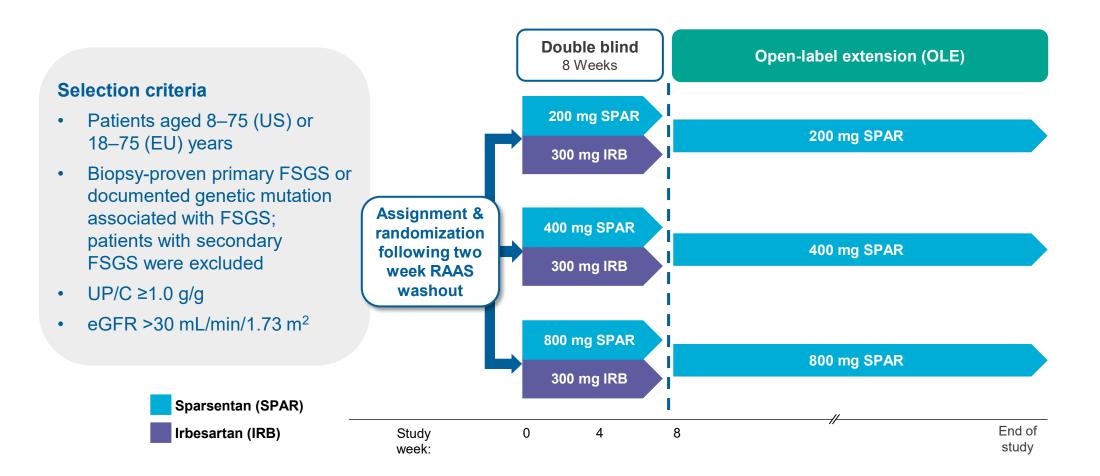
Phase 3 study sparsentan vs irbesartan

108-week blinded treatment period with 4 weeks of off-treatment follow-up and followed by an open-label extension period

Phase 2 DUET Study of Sparsentan in FSGS

A Phase 2, randomized, double-blind, parallel-group, active-controlled study of the efficacy and safety of sparsentan for the treatment of primary or genetic FSGS

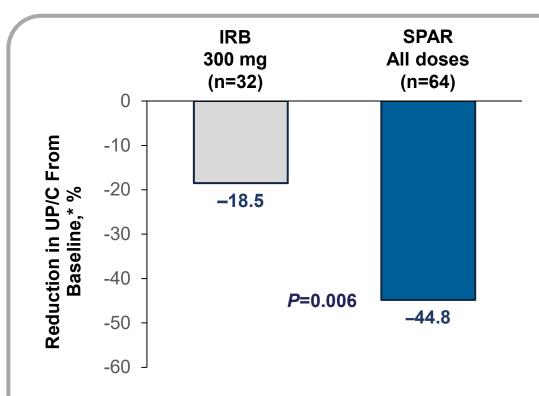
Dual blockade of ETA and AT1 receptors (sparsentan) in patients with primary or genetic FSGS reduces proteinuria to a greater extent compared with the blockade of AT1 receptor alone (irbesartan)


Objectives

To evaluate the efficacy and safety of sparsentan, compared with irbesartan, to reduce proteinuria in patients with primary or genetic FSGS during an 8-week, double-blind study period and an open-label extension

AT1 = angiotensin II receptor type 1; ETA = endothelin receptor type A. Trachtman H, et al. J Am Soc Nephrol 2018; **29:**2745–2754; DUET ClinicalTrials.gov Identifier: NCT01613118.

Phase 2 DUET Study: Trial Design

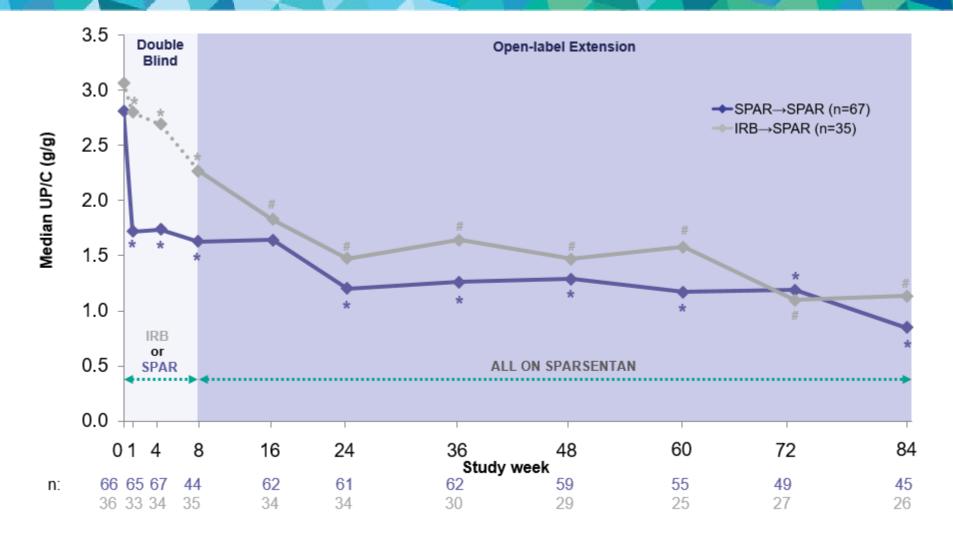

*After 2 weeks' RAAS inhibitor washout. Patients were assigned to dose cohort, then randomized to sparsentan or irbesartan within the dose cohort. Study drug administered orally, once daily. Patients who weighed ≤50 kg received half of the daily dose of sparsentan or irbesartan according to the assigned dose cohort.

eGFR = estimated glomerular filtration rate; IRB = irbesartan; SPAR = sparsentan; RAAS = renin–angiotensin–aldosterone system; UP/C = urinary protein-to-creatinine ratio.

Trachtman H, et al. J Am Soc Nephrol 2018; 29:2745–2754; DUET ClinicalTrials.gov Identifier: NCT01613118.

Phase 2 DUET Study: Overall Sparsentan Treatment Group Met Primary Endpoint; More Than Doubled Reduction of Proteinuria vs. Irbesartan

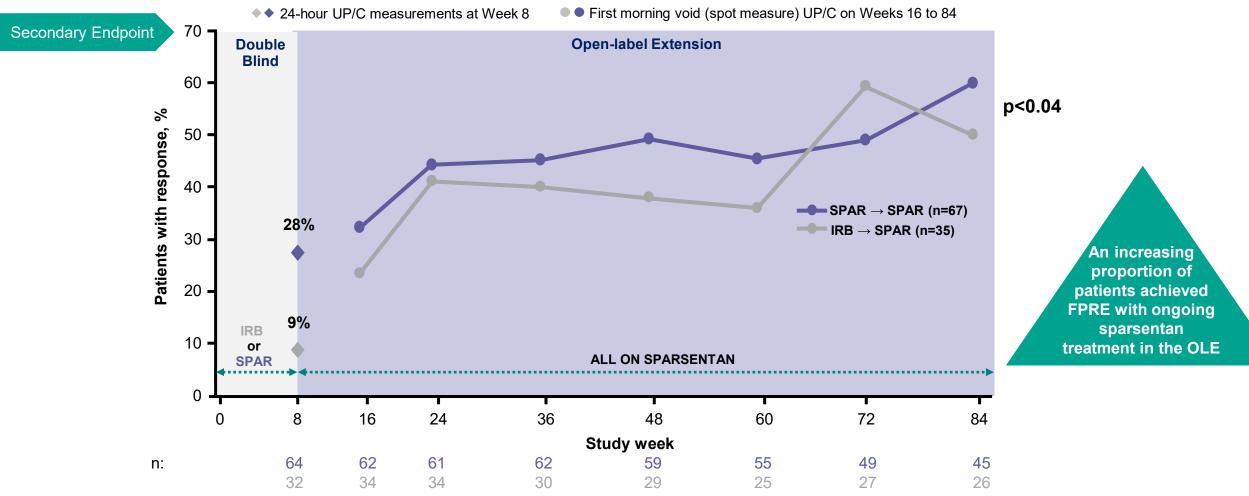
	Patients with TEAEs During the Double-Blind Period, %		
TEAE	IRB (n = 36)	SPAR, All Doses (n = 73)	
Any	72.2	76.7	
Drug-related	36.1	43.8	
Serious	2.8	2.7	
Leading to dose change or interruption	8.3	23.3	
Leading to drug discontinuation	2.8	4.1	
Leading to study withdrawal	2.8	2.7	
Death	0	0	


Significant reduction in proteinuria after 8 weeks of sparsentan vs irbesartan treatment in primary and genetic FSGS patients

Similar incidence of TEAEs between irbesartan and sparsentan-treated patients

*Geometric least squares mean reduction. P values from analysis of covariance. Analyses based on the efficacy evaluable set. UP/C based on 24-hour urine. Individual dose cohorts showed clear signals of relative improvement, but did not reach statistical significance; H Trachtman, *et al. J Am Soc Nephrol* 2018; 29:2745–2754. Loreto G, *et al. ERA-EDTA* 2017 Oral presentation TO042

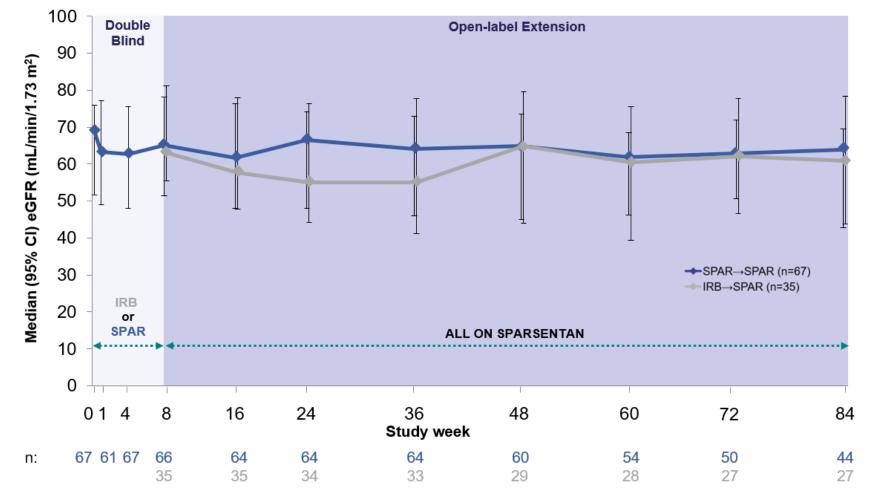
Phase 2 DUET Study: Sustained Long-Term Proteinuria Reduction over 84 Weeks



95% confidence interval of the mean change from baseline (* Week 0; # Week 8) excludes 0. Based on the full analysis set. UP/C based on first morning void. UP/C = urinary protein-to-creatinine ratio; OLE = open-label extension

© 2020 Travere Therapeutics, Inc.

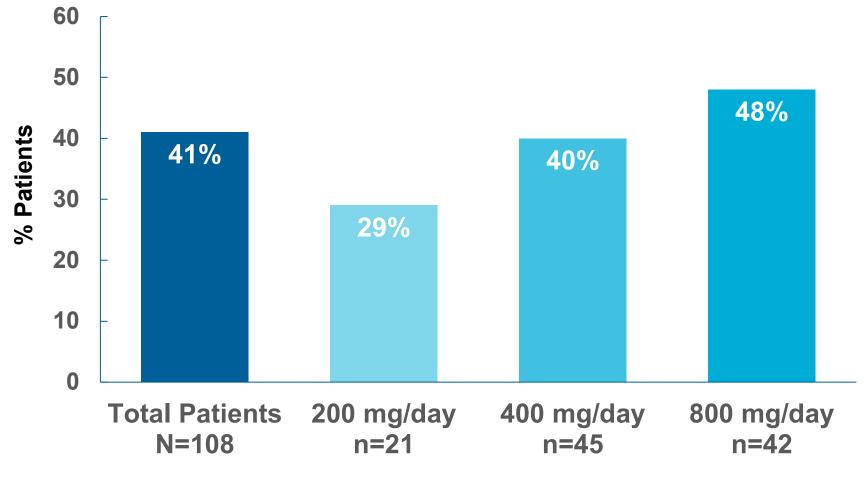
Phase 2 DUET Study: Promising Proportion of Patients Achieved FSGS Partial Remission Endpoint (FPRE)


FPRE is defined as UP/C ≤ 1.5 g/g and >40% reduction in UP/C from baseline. Baseline in the double-blind period defined as Week 0; baseline for the open-label period defined as last observation before start of open-label sparsentan treatment (i.e.Week 8). Data for Week 8 are based on the EES. Data for Weeks 16 to 84 are based on the full analysis set. EES = efficacy evaluable set; FPRE = FSGS partial remission endpoint; IRB:SPAR = patients randomized to irbesartan who then transitioned to sparsentan in the OLE;

OLE = open-label extension; SPAR:SPAR = patients randomized to sparsentan who also received sparsentan in the OLE; UP/C = urinary protein-to-creatinine ratio. 1. Hogan J, et al. *J Am Soc Nephrol* 2018; 29:61 (Abstract FR-OR087); 2. Trachtman H, et al. *J Am Soc Nephrol* 2018; 29:2745–2754; DUET ClinicalTrials.gov Identifier: NCT01613118.

© 2020 Travere Therapeutics, Inc.

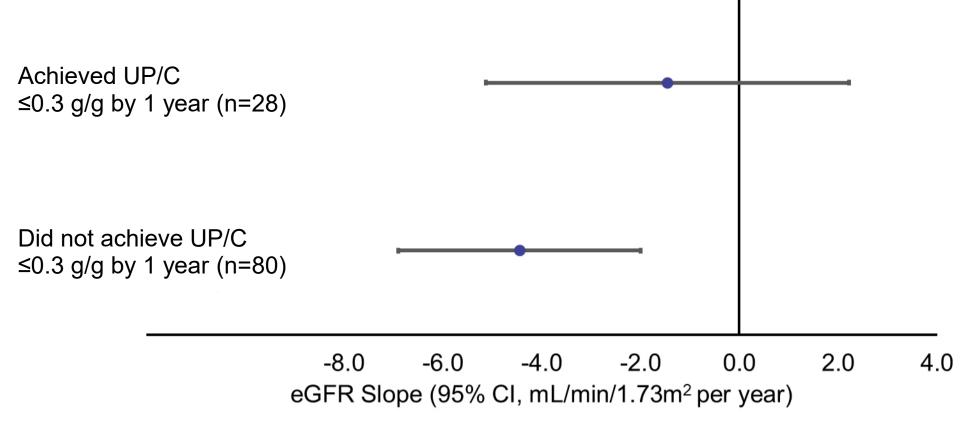
Phase 2 DUET Study: eGFR Remained Stable in Sparsentan-Treated Patients Over 84 Weeks



Based on the full analysis set. 95% CIs were calculated for the median value at each time point. Note: There were 9 study withdrawals due to renal causes during the follow-up period, including 1 case of end-stage renal disease.

CI = confidence interval; eGFR = estimated glomerular filtration rate; IRB:SPAR = patients randomized to irbesartan who then transitioned to sparsentan in the OLE; OLE = open-label extension; SPAR:SPAR = patients randomized to sparsentan who also received sparsentan in the OLE. Hogan J, et al. Long-Term Effects of Sparsentan, a Dual Angiotensin and Endothelin Receptor Antagonist in Primary FSGS: Interim 84-Week Analysis of the DUET Trial (Abstract FR-OR087). *J Am Soc Nephrol.* 2018;29:61. Accessed at https://www.asn-online.org/education/kidneyweek/archives

Phase 2 DUET Study: Post hoc analysis – A High Percentage of Patients Achieved UP/C ≤0.3 g/g at Any Visit in a Dose-related Manner



Sparsentan Dose Cohort

Hogan J, *et al.* ASN 2020 [oral presentation] 109 patients were randomized in DUET; 108 patients received at least one dose of sparsentan and were eligible for evaluation of UP/C while on sparsentan.

Achieving Complete Remission With Sparsentan in the First Year was Associated With Slower eGFR Decline Over Two Years

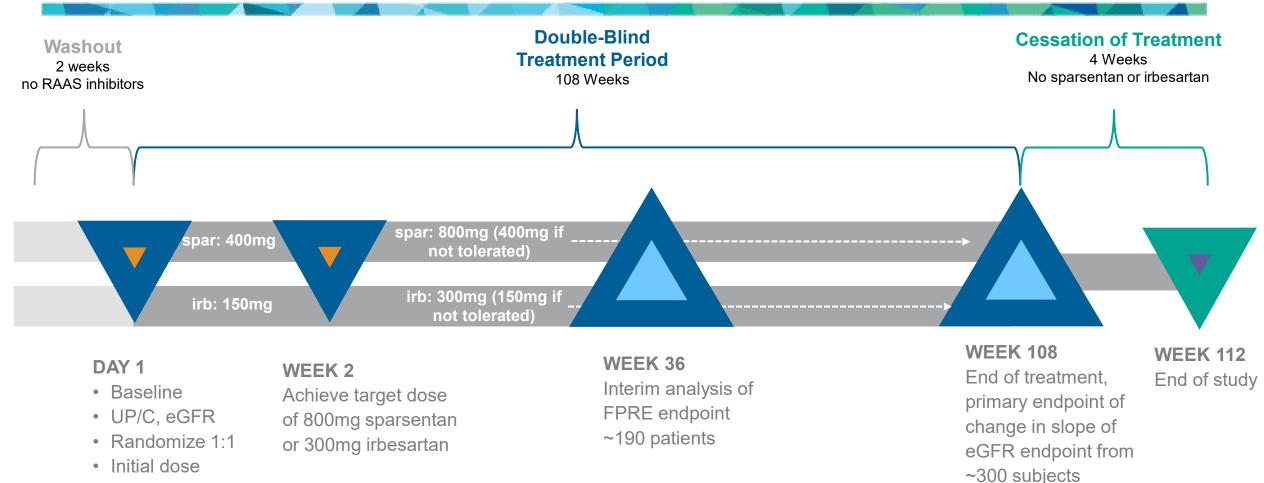
Hogan J, et al. ASN 2020 [oral presentation]

A Closer Look at Edema in DUET

	Patients n (%)			
	Irbesartan		Sparsentan	
TEAEs with Incidence >5%	All	Drug Related	All	Drug Related
Headache	7 (19.4)	1 (2.8)	14 (19.2)	9 (12.3)
Hypotension/orthostatic hypotension	3 (8.3)	3 (8.3)	12 (16.4)	11 (15.1)
Dizziness	4 (11.1)	3 (8.3)	10 (13.7)	8 (11.0)
Edema/edema peripheral	1 (2.8)	0	9 (12.3)	2 (2.7)
Nausea	3 (8.3)	0	9 (12.3)	6 (8.2)
Diarrhea	1 (2.8)	0	6 (8.2)	2 (2.7)
Vomiting	1 (2.8)	0	6 (8.2)	4 (5.5)
Upper abdominal pain	2 (5.6)	0	4 (5.5)	2 (2.7)
Cough	2 (5.6)	0	3 (4.1)	0
Fatigue	4 (11.1)	1 (2.8)	3 (4.1)	2 (2.7)
Nasal congestion	4 (11.1)	0	2 (2.7)	0
Upper respiratory tract infection	2 (5.6)	0	2 (2.7)	0
Hyperkalemia	2 (5.6)	2 (5.6)	1 (1.4)	1 (1.4)
Muscle spasms	2 (5.6)	0	0	0

- Edema is common in people living with FSGS
- Adverse event of interest given potential ERA class effect
- Treatment related edema events in DUET
 were well managed with diuretics
- OLE findings are consistent with double blind portion of study

Leveraging Our Learnings in DUET to Design Pivotal DUPLEX Study


108	

UP/C inclusion criteria from 1.0g/g to 1.5g/g to allow all patients to be eligible for FPRE endpoint Evaluating the FPRE endpoint after 36-weeks of treatment

Target dose of 800mg of sparsentan with two-week dose titration schedule Confirmatory eGFR endpoint after 108 weeks of treatment

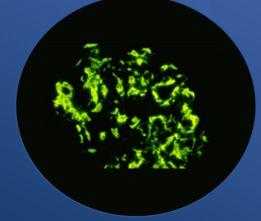
Phase 3 DUPLEX Study Designed to Support NDA & CMA Submissions for FSGS

- More than 90% powered to detect difference in FPRE response
- 90% powered to detect low single digit difference in eGFR slope b/t sparsentan and irbesartan arms after 108wks

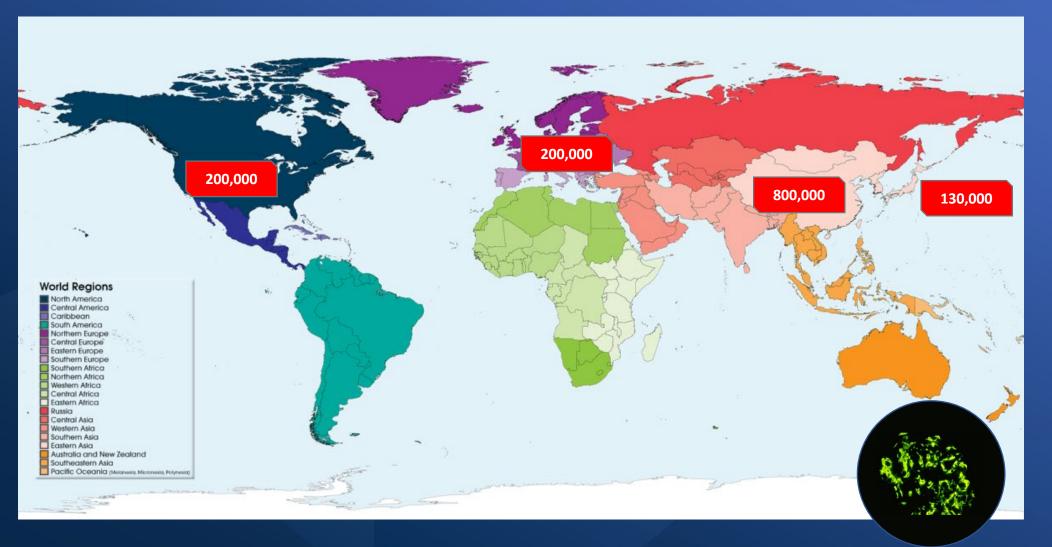
Enrollment Complete; On Track for Topline Interim Data in February 2021

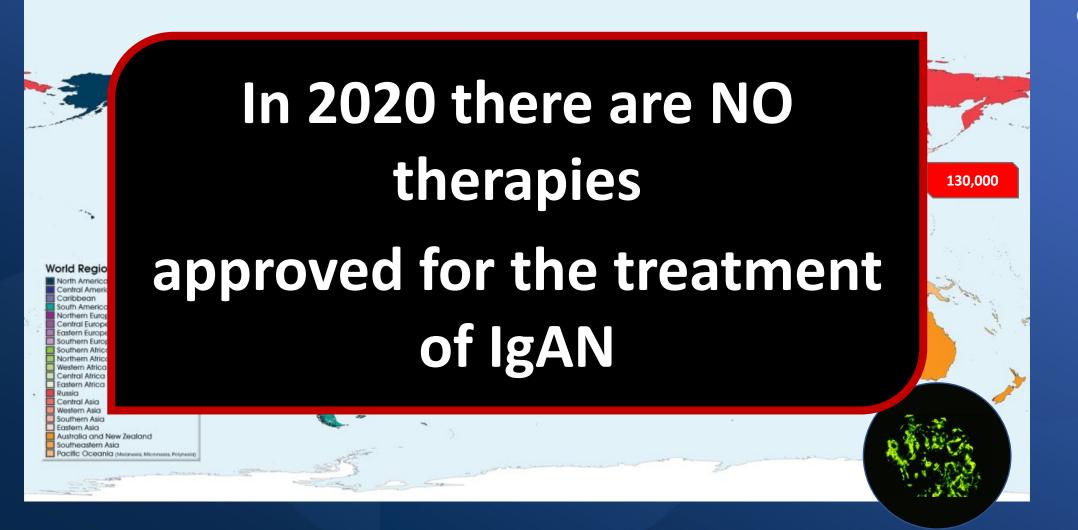
- DUPLEX achieved randomization of 300th patient and completed new patient enrollment
- DUPLEX has completed four independent data monitoring committee assessments of safety with recommendations for study to proceed as planned
- Sample size reassessment completed no increase in sample size recommended
- Initial baseline characteristics supporting the interim assessment are in-line with expectations and the DUET/NEPTUNE databases used to design DUPLEX
 - No clinically meaningful difference in the baseline distribution of UP/C compared to DUET
 - Blinded baseline range of eGFR is consistent with DUET
 - Blinded variability in-line with expectations
- Topline data from interim proteinuria analysis are anticipated in February 2021

IgA nephropathy: where are we in 2020 and where is the unmet need?


Professor Jonathan Barratt University of Leicester & John Walls Renal Unit, Leicester

<complex-block>





We're On A Mission

To improve the care and outcomes of patients with kidney disease worldwide through the development and implementation of global clinical practice guidelines.

WHAT WE DO HISTORY GLOBAL NETWORK PARTNERS

 \cap

What We Do

KDIGO is the global organization developing and implementing evidence based clinical practice guidelines in kidney disease. It is an independent, volunteer-led, self-managed charity incorporated in Belgium accountable to the public and the patients it serves. KDIGO has a small but energetic core staff who facilitate all of its work across the globe.

John Davis CEO

Danielle Green

Executive Director Michael Cheung Chief Scientific Officer

Melissa Thompson Chief Operating Officer

Amy Earley Guideline Development Director

Kathleen Conn Director of Communications

Tanya Green

Events Director

GUIDELINES

KDIGO guidelines translate scientific advances into useful and practical clinical practice recommendations and observations.

CONFERENCES

KDIGO regularly convenes Controversies Conferences which bring together expert thought leaders to discuss and debate nephrology-related issues not yet fully resolved.

KDIGO implementation activities include sessions at society congresses, stand-alone KDIGO meetings, summits, expert roundtables, implementation kits, speaker tours and more.

ORIGINAL ARTICLE

Intensive Supportive Care plus Immunosuppression in IgA Nephropathy

Thomas Rauen, M.D., Frank Eitner, M.D., Christina Fitzner, M.Sc., Claudia Sommerer, M.D., Martin Zeier, M.D., Britta Otte, M.D., Ulf Panzer, M.D., Harm Peters, M.D., Urs Benck, M.D., Peter R. Mertens, M.D., Uwe Kuhlmann, M.D., Oliver Witzke, M.D., Oliver Gross, M.D., Volker Vielhauer, M.D., Johannes F.E., Mann, M.D., Ralf-Dieter Hilgers, Ph.D., and Jürgen Floege, M.D., for the STOP-IgAN Investigators*

2.3. Treatment

After ten years of follow-up, no difference between

and supportive care alone in IgA nephropathy Thomas Rauen¹, Stephanie Wied², Christina Fitzner², Frank Eitner^{1,3}, Claudia Sommere⁴, Martin Zeier Britta Otte², UIF Panzer⁴, Klemens Budde², Urs Benck², Peter R. Mertens³, Uwe Kuhimann¹⁰, Oliver Witzke¹¹, Oliver Gross¹², Volker Vielhauer¹³, Johannes F.E. Mann¹⁴, Ralf-Dieter Hilgers² and Jürgen Floege¹, for the STOPI₄BAN Investigators¹⁵

clinical trial

¹Deksion of Nephnology and Clinical Immunology, BWTH Aachen Linkersky, Aachen, Cermany, ¹Opartment of Medical Statistics, RWTH Aachen University, Aachen, Germany, ¹Depart Ac, Kindon J Duesses Beazet, Wugenard Germany, ¹Department of Nephnology and Renal Center Heidebrag, Luhivesky of Heidebberg, Heidebberg, Germany, ¹Detrand Medicale D, Department of Nephnology, Hoperension and Houmanology, University Hospital Meanets, Muestes, Germany, ¹Detrand Medicale D, Department of Nephnology, Hoperension and Bieumanology, University Hospital Meanets, Muestes, Germany, ¹Detrand Medicale, D, Charle Campus, Metal, Charle Linker, Bernin, ¹Selation O, Bernin, ¹Selation O, Bernin, ¹Selation O, Bernin, ¹Selation O, Bernin, ¹Selation, Charle C, Lande Linker, Bernin, ¹Selation C, Bernin, ¹Selation, Charle C, Barle C,

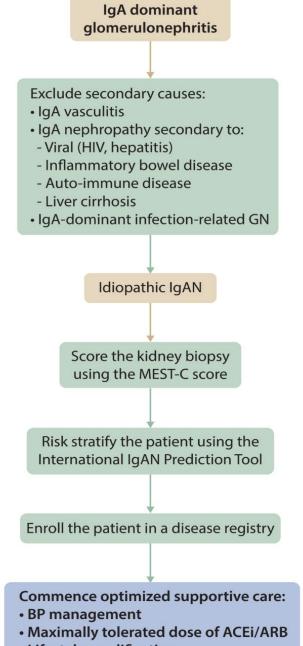
Practice Point 2.3.1. Considerations for treatment of all patients with IgAN who do not have a variant form of primary IgAN:

- The primary focus of management should be optimised supportive care.
- Assess cardiovascular risk and commence appropriate interventions as necessary.
- Give lifestyle advice, including information on dietary sodium restriction, smoking cessation, weight control, and exercise as appropriate.
- Other than dietary sodium restriction, no specific dietary intervention has been shown to alter outcomes in IgAN.
- Variant forms of IgAN: IgA deposition with minimal change disease (MCD); IgAN with acute kidney injury (AKI) and IgAN with rapidly progressive glomerulonephritis may require specific immediate treatment.

Recommendation 2.3.1.

We recommend that all patients have their blood pressure managed, as described in Chapter 1. If the patient has proteinuria >0.5 g/24h, we recommend that initial therapy be with either an ACEi or ARB, but not both (1B).

Recommendation 2.3.2.

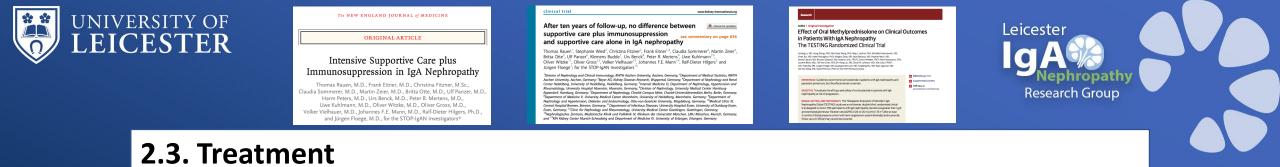

We recommend that all patients with proteinuria >0.5 g/24h, irrespective of whether they

have hypertension, are treated with either an ACEi or ARB but not both (1B).

- Lifestyle modification
- Address cardiovascular risk

Practice Point 2.3.3. Considerations for treatment of patients with IgAN who are at high risk of progressive CKD despite maximal supportive care.

- High risk of progression in IgAN is currently defined as proteinuria >1g/24h despite at least 90 days of optimized supportive care.
- Immunosuppressive drugs should only be considered in patients with IgAN who remain at high risk of progressive CKD despite maximal supportive care (the patients enrolled in the only large RCT suggesting benefit of immunosuppression had an average of 2.4 g/day of proteinuria).

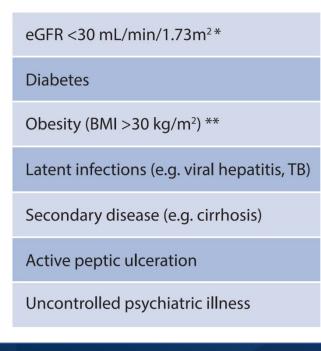


Practice Point 2.3.3. Considerations for treatment of patients with IgAN who are at high risk of progressive CKD despite maximal supportive care.

- In view of the current uncertainty over the safety and efficacy of current immunosuppressive treatment choices all patients who remain at high risk of progressive CKD despite maximal supportive care should be offered the opportunity to take part in a clinical trial.
- In all patients in whom immunosuppression is being considered, a detailed discussion of the risks and benefits of each drug should be undertaken with the patient with a recognition that adverse treatment effects are more likely in patients with an eGFR below 50 ml/min/1.73 m².

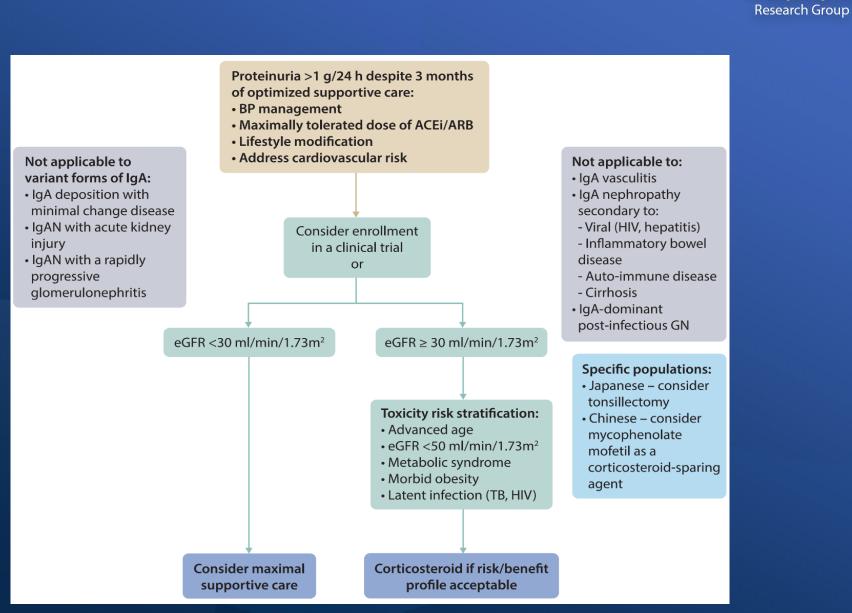
Recommendation 2.3.3.

We suggest that patients who remain at high risk of progressive CKD despite maximal supportive care are considered for a six-month course of corticosteroid therapy. <u>The important</u> risk of treatment-emergent toxicity must be discussed with patients, particularly those who have an eGFR below 50 ml/min/1.73 m² (2B).



Practice Point 2.3.5. Use of corticosteroids in IgAN:

 Clinical benefit of corticosteroids in IgAN is not established and should be given with extreme caution or avoided entirely in the following situations:



* *

Leicester

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Intensive Supportive Care plus Immunosuppression in IgA Nephropathy

Thomas Rauen, M.D., Frank Eitner, M.D., Christina Fitzner, M.Sc., Claudia Sommerer, M.D., Martin Zeier, M.D., Britta Otte, M.D., Ulf Panzer, M.D., Harm Peters, M.D., Urs Benck, M.D., Peter R. Mertens, M.D., Uwe Kuhlmann, M.D., Oliver Witzke, M.D., Oliver Gross, M.D., Volker Vielhauer, M.D., Johannes F.E. Mann, M.D., Ralf-Dieter Hilgers, Ph.D., and Jürgen Floege, M.D., for the STOP-IgAN Investigators*

2.3. Treatment

After ten years of follow-up, no difference between Check for update

supportive care plus immunosuppression and supportive care alone in IgA nephropathy

Thomas Rauen¹, Stephanie Wied², Christina Fitzner², Frank Eitner^{1,3}, Claudia Sommere⁴, Martin Zeier⁴, Britta Orte¹, UIP Panzer⁴, Nemens Rudzle⁴, Urs Benck², Peter R. Mertens², Uwe Kuhlmann¹⁰, Oliver Witzle¹, Oliver Gross^{1,2}, Valker Velhauer^{1,1}, Johannes F.E. Mann^{1,4}, Ralf-Dieter Hilgers² and Juigen Floege², for the STOP-IgAN Investigators^{1,3} Division of Nephrology and Clinical Immunology, RWTH Aachen Un

18: ³Bayer AG, Kidney Diseases Research, Wug ersity of Heidelberg, Heidelberg, Germany, "Internal Medicine D, Dentriment of Nephrology, Hyp iny Hospital Muenster, Muenster, Germany, "Division of Nephrology, University Medical Center Ha

Mycophenolate Mofetil Combined With Prednisone Versus Full-Dose Prednisone in IgA Nephropathy With Active Proliferative Lesions: A Randomized Controlled Trial

Jin-Hua Hou, MD,^{1,*} Wei-Bo Le, PhD,^{1,*} Nan Chen, MD,² Wei-Ming Wang, PhD,² Zhang-Suo Liu, MD,³ Dong Liu, PhD,³ Jiang-Hua Chen, MD,⁴ Jiong Tian, PhD,⁴ Ping Fu, MD, PhD,⁵ Zhang-Xue Hu, MD,⁵ Cai-Hong Zeng, PhD,¹ Shao-Shan Liang, MD,¹ Min-Lin Zhou, MD,¹ Hai-Tao Zhang, MD,¹ and Zhi-Hong Liu, MD¹

Practice Point 2.3.7. Other pharmacologic therapies evaluated in IgAN

clinical trial

Agent	Suggested usage	Remarks	
Anti-platelet agents	Not recommended	No documented evidence of efficacy	
Anticoagulants	Not recommended	No documented evidence of efficacy	
Azathioprine	Not recommended	No evidence for efficacy as monotherapy or when combined with corticosteroids	
Cyclophosphamide	Not recommended	Unless in the setting of rapidly progressive IgAN	
Calcineurin inhibitors	Not recommended	No documented evidence of efficacy	
Rituximab	Not recommended	No documented evidence of efficacy	
Fish oil	Not recommended	Patients who wish to take fish oil should be advised of the dose and formulation used in the published clinical trials that reported efficacy	
Mycophenolate mofetil (MMF)	Chinese patients In those patients in whom corticosteroids are being considered MMF may be used as a steroid-sparing agent	In a single RCT conducted in China, MMF with low dose corticosteroids was non-inferior to standard dose corticosteroids for the treatment of incident IgAN presenting with proliferative histologic lesions (E or C lesions with or without necrosis) on kidney biopsy and proteinuria >1.0 g/day. There were significantly fewer corticosteroid related side effects in the combination therapy arm. (PICO 18.16) ^{1,6}	
	Non-Chinese patients There is insufficient evidence to support the use of mycophenolate mofetil	In the RCTs of MMF in non-Chinese patients there was no evidence for efficacy of MMF monotherapy. (PICO 18.15) ^{2, 3, 4, 5, 6}	

Original In	nvestigation
-------------	--------------

Effects of Hydroxychloroquine on Proteinuria in IgA Nephropathy: A Randomized Controlled Trial

Check for updates

AJKD

Leicester IgA Nephropathy Research Group

Li-Jun Liu, Ya-zi Yang, Su-Fang Shi, Yun-Fei Bao, Chao Yang, Sai-Nan Zhu, Gui-Li Sui, Yu-Qing Chen, Ji-Cheng Lv, and Hong Zhang

2.3. Treatment

Practice Point 2.3.7. Other pharmacologic therapies evaluated in IgAN

Hydroxychloroquine	<u>Chinese patients</u> In those patients who remain at high risk of progression in spite of optimized supportive care	In a small, short-term RCT conducted in China, hydroxychloroquine introduced to patients with proteinuria of 0.75-3.5 g/d despite optimized ACEi/ARB reduced proteinuria by 48% versus 10% in the placebo group at 6 months (PICO 11.5) ⁷	
	<u>Non-Chinese patients</u> There is insufficient evidence to support the use of hydroxychloroquine	Hydroxychloroquine has not been evaluated in non- Chinese patients.	

Yang et al. BMC Nephrology (2019) 20:297 https://doi.org/10.1186/s12882-019-1488-6

BMC Nephrology

Open Access

Check for updates

RESEARCH ARTICLE

Comparison of the effects of hydroxychloroquine and corticosteroid treatment on proteinuria in IgA nephropathy: a case-control study

Ya-zi Yang[†], Pei Chen[†], Li-Jun Liu^{*}, Qing-Qing Cai, Su-Fang Shi, Yu-Qing Chen, Ji-Cheng Lv and Hong Zhang

Nephrology

Original Report: Patient-Oriented, Translational Research

Am J Nephrol 2018;47:145–152 DOI: 10.1159/000487330 Received: December 8, 2017 Accepted: February 1, 2018 Published online: March 2, 2018

Effects of Hydroxychloroquine on Proteinuria in Immunoglobulin A Nephropathy

Ya-Zi Yang Li-Jun Liu Su-Fang Shi Jin-Wei Wang Yu-Qing Chen Ji-Cheng Lv Hong Zhang

Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China

Transplant	(2014) 29: 1546-1553	
1000		
es publicat	ion 3 March 2014	

A multicenter randomized controlled trial of tonsillectomy combined with steroid pulse therapy in patients with immunoglobulin A nephropathy

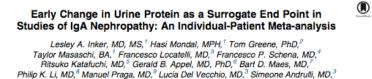
upp Kasemuri, Mitsuhine Yoshimuri, Yoshidi Miyazaki', Hidokaan Ghamoto', Kenjiro Kimura', I Hanari, Naamo Matsuhali, Mi Yaamori Utuanomiyi Mikakoo Ogara', Takahi Yosho', eeo Goongoi, Takoo Hadihadi, Hiloyoka Ledd, Asiya Timuri, Stonish Herdenhi', dei Sanda', Takamori Shihari', Takaho I amagandi, Hiloyaki Ledd, Angara Yang, Michik Kanzawie Wadd', Tauni Yangin', Naoto Miuri', Tilokana Ima', Konji Kasana Jina, Kanzi Kanzawi Wadd', Tauni Yangin, Yaoko Miuri', Tilokana Ima', Konji Kasana Jina, Kongi Kanzawi andhi Pujimoto', Sachidi Matsuah', and Yasahiko Tomino' and The Special JgA Nephropathy Study of p and Historic Kasano Mohao Carener and Talema Madatan. Jaka Utuanovi Shadi ethalian. Talepu, "Daparate Si

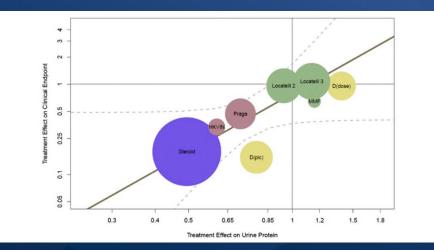
2.3. Treatment

Practice Point 2.3.8. Tonsillectomy in IgAN:

- Tonsillectomy should not be performed as a treatment for IgAN in Caucasian patients.
- Tonsillectomy may be indicated in some national guidelines for the treatment of recurrent tonsillitis in patients with IgAN.
- Multiple studies from Japan have reported improved kidney survival and partial or complete remission of hematuria and proteinuria following tonsillectomy alone or with pulsed corticosteroids.

	Japanese IgAN	Chinese IgAN	Caucasian IgAN
Clinical practice	Performed routinely (often with pulsed corticosteroids)	Not routinely performed	Not performed
Remarks	Multiple cohort studies including a large retrospective study with propensity matching report improved kidney survival following tonsillectomy. A single RCT failed to show a difference in eGFR at 1 year comparing tonsillectomy vs tonsillectomy and pulsed corticosteroids, no longer-term data is available from this study	Inconsistent data from small retrospective cohort studies and a small single center RCT	Very few data available in this population. Available data does not support the efficacy of tonsillectomy as a treatment for IgAN in Caucasian patients

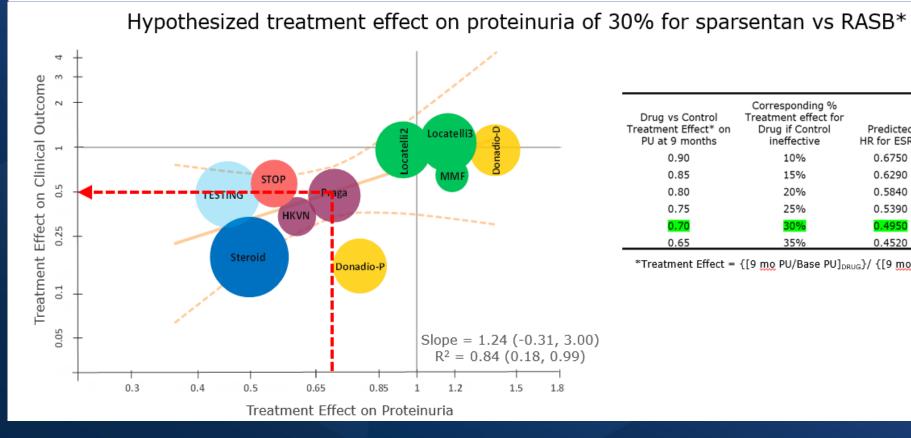



Practice Point 2.3.4. Proteinuria reduction to under 1 g/d is a surrogate marker of improved kidney outcome in IgAN and reduction to under 1g/d is a reasonable treatment target.

AJKD

Original Investigation

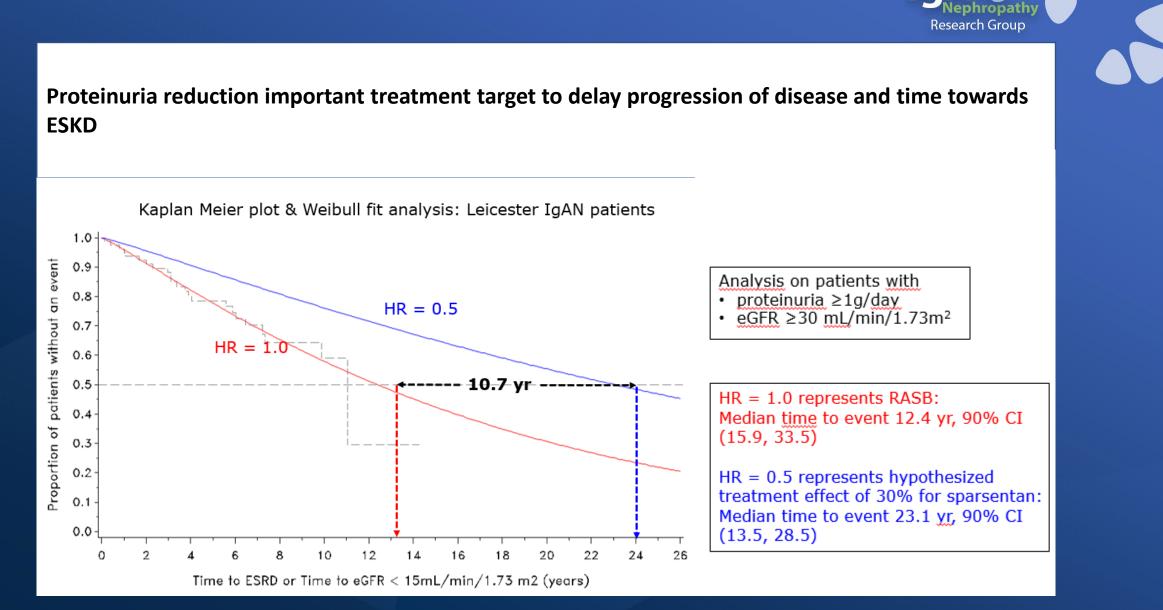
Carlo Manno, MD,³ Eduardo Gutierrez, MD,⁹ Alex Mercer, PhD,¹⁰ Kevin J. Carroll, PhD,¹¹ Christopher H. Schmid, PhD,¹² and Andrew S. Levey, MD



Kidney Health Initiative (2019): Predicted Treatment Effect on ESKD given change in Proteinuria

Drug vs Control Treatment Effect* on PU at 9 months	Corresponding % Treatment effect for Drug if Control ineffective	Predicted HR for ESRD	95% CI
0.90	10%	0.6750	(0.363, 1.252)
0.85	15%	0.6290	(0.366, 1.080)
0.80	20%	0.5840	(0.365, 0.934)
0.75	25%	0.5390	(0.356, 0.816)
0.70	30%	0.4950	(0.336, 0.730)
0.65	35%	0.4520	(0.302, 0.677)

Leicester


hropathy

Research Group

*Treatment Effect = {[9 mo PU/Base PU]_{DRUG}}/ {[9 mo PU/Base PU]_{CONT}}

RASB: renin-angiotensin system blockade Thompson et al., Clin J Am Soc Nephrol (2018)

Leicester

0

Source: data on file

RESEARCH RECOMMENDATIONS

The following areas are of high priority for future research to improve the treatment and outcomes of patients with IgAN:

***** Evaluation of therapeutic strategies that minimize or avoid systemic corticosteroid exposure:

Emerging data are required to clarify the role of novel therapies in **non-immunosuppressive comprehensive supportive care**.

- Endothelin Receptor Antagonism: sparsentan (PROTECT) & atrasentan (ALIGN)
- SGLT2 inhibition: (kidney and cardiovascular outcomes in non-diabetic kidney disease)

RESEARCH RECOMMENDATIONS

The following areas are of high priority for future research to improve the treatment and outcomes of patients with IgAN:

***** Evaluation of therapeutic strategies that minimize or avoid systemic corticosteroid exposure:

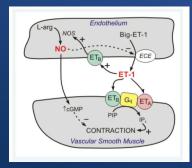
We need to better understand the value of mycophenolate mofetil and hydroxychloroquine in the management of IgAN in different racial groups, and clinical disease severity.

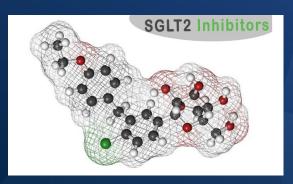
RESEARCH RECOMMENDATIONS

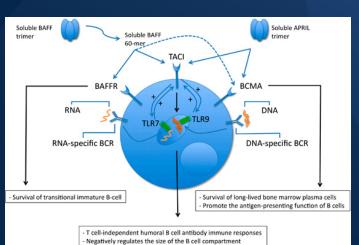
The following areas are of high priority for future research to improve the treatment and outcomes of patients with IgAN:

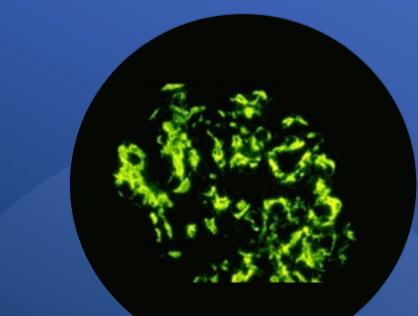
***** Evaluation of therapeutic strategies that minimize or avoid systemic corticosteroid exposure:

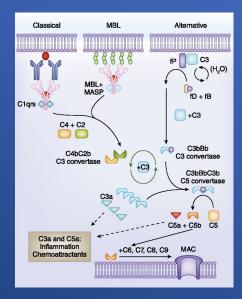
- Targeted-release formulation (TRF) of budesonide
- Inhibition of the complement system (lectin (MASP-2), alternative (Factor B) and final common (C5) pathways)
- Inhibition of B cell activation and survival (by blocking BAFF and APRIL signalling to B cells).

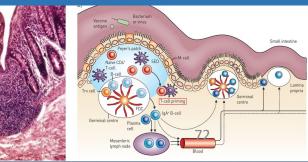






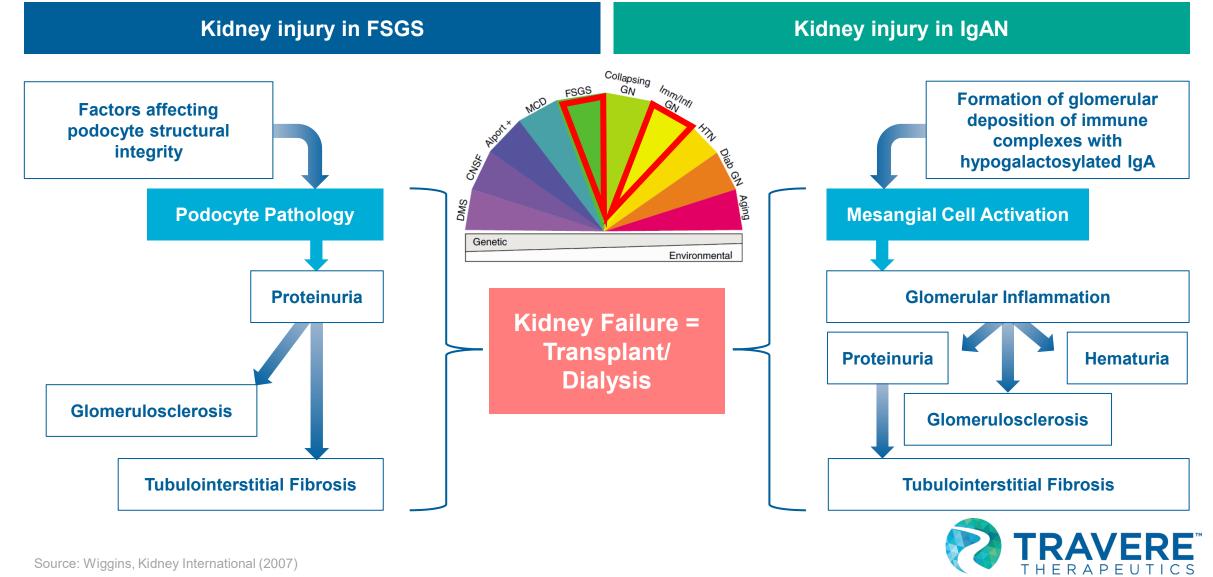

THE NEXT YEARS





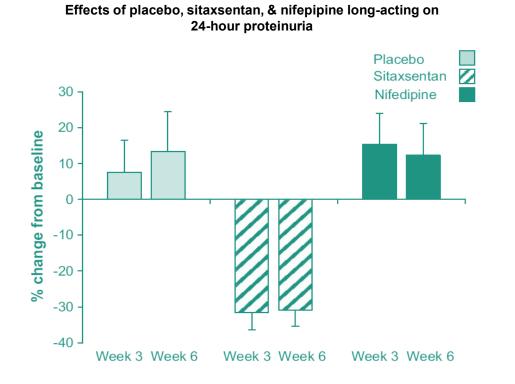
Leicester IGA Nephropathy Research Group

Mucosa Associated Lymphoid Tissue



The Clinical Path to Shaping the Treatment Paradigm for IgAN

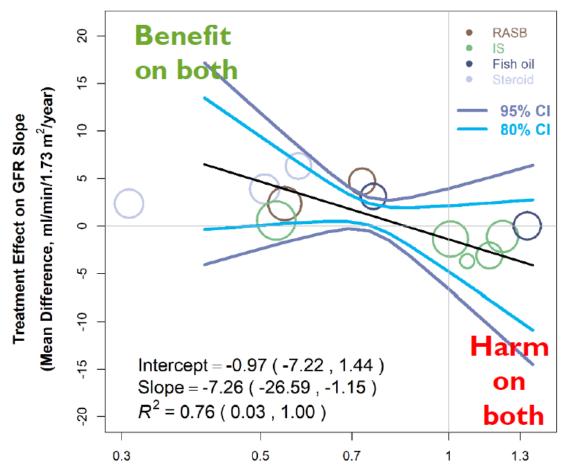
Noah Rosenberg, MD – Chief Medical Officer



FSGS and IgAN Share Common Renal Injury Pathways

Combined RAAS and Selective ET_A Inhibition Has Demonstrated a Substantial Antiproteinuric Effect

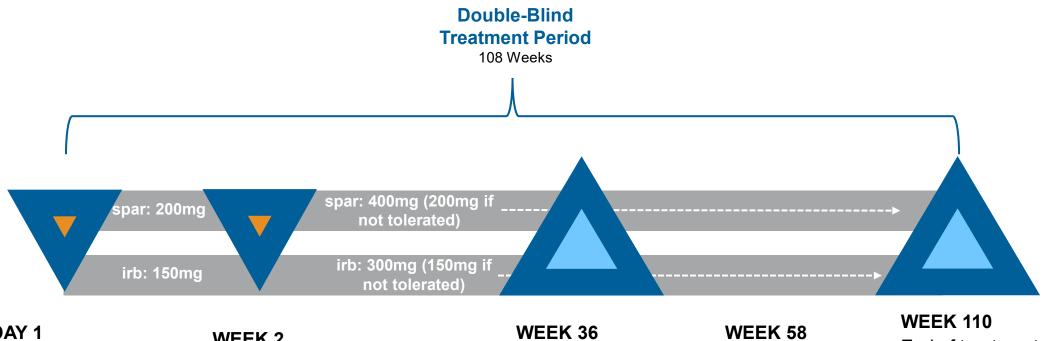
In a randomized, double-blind, 3-way crossover study, patients (N=27; n=14 IgAN diagnoses) on recommended ACEi/ARB treatment received sitaxsentan, nifedipine long acting or placebo for 6 weeks



- Sitaxsentan is a selective ET_A antagonist
- Nifedipine is a Ca²⁺ channel blocker (active comparator)
- Compared with placebo, sitaxsentan reduced 24-hour proteinuria (*p*=0.0069), protein:creatinine ratio (p=0.0102), blood pressure (p=0.0069) and pulse wave velocity (measure of arterial stiffness; p=0.0052)
- Nifedipine matched the BP and pulse wave velocity reductions seen with sitaxsentan but did not reduce proteinuria
- Selective ET_A receptor antagonism may provide additional cardiovascular and renal protection by reducing proteinuria, blood pressure and arterial stiffness

Dhaun N, et al. Hypertension 2011; 4:772–779

Studies Suggested Greater Reduction in Proteinuria Also Resulted in Slower Progression of IgAN


Treatment Effect on Change in Urine Protein at 6 Months (GMR)

- Recent analyses of trial-level data from ~1,000 patients with IgAN show associations between treatment effect on change in proteinuria and rate of change in GFR¹
 - Predicted treatment effects on GFR slope were strongest for larger treatment effects on change in UP/C

^{1.} Inker on behalf of CKD-EPI et al. ASN Kidney Week 2019;

Leveraging Learnings from DUET, Historical ET_A Inhibition and **Trial-Level Data to Design PROTECT in IgAN**

DAY 1

- Discontinue prior ACE and/or ARB
- Randomize 1:1
- Baseline UP/C •
- Initial dose

WEEK 2 Achieve target dose of 400mg sparsentan or 300mg irbesartan

Primary endpoint of change from baseline UP/C ~280 patients

Secondary endpoints rate of change in eGFR ~380 subjects

End of treatment, confirmatory analysis of rate of change in eGFR ~380 subjects

90% powered to detect a 30% difference in proteinuria between sparsentan and irbesartan arms

PROTECT On Course for Topline Proteinuria Data in 3Q21

			-
		_	_
—	—	—	—
—	—	—	—
	_		

PROTECT achieved enrollment of the first 280 patients to support the interim assessment of UP/C reduction after 36 weeks PROTECT continues to enroll towards a total sample size of ~380 patients with IgAN – completion of enrollment is expected in 2021 Topline data from the 36-week interim proteinuria analyses are expected in 3Q21; if successful, expected to support accelerated approval submissions in the US and EU

The Need for Treatments in FSGS and IgAN

Peter Heerma, Chief Commercial Officer

The Devasting Impact of Progressive Kidney Disease for Patients, its Caretakers and Healthcare Costs for Society

The devastating impact of progressive kidney disease:

- Kidney disease is one of the leading causes of death
- About 1-in-4 patients die within first year of dialysis
- High mortality rate prior to ESKD due to kidney related vascular events

Progressive kidney disease has a dramatic impact on healthcare cost:

- CKD accounts for ~20% in traditional Medicare spending upwards of \$114B/year
- Total Medicare expenditures \$49.2B for beneficiaries with ESKD in the US
- >125,000 patients start dialysis each year in the US; this number is growing

Results in disproportional number of patients with FSGS and IgAN in ESKD due to progressive nature of disease

The Burden of FSGS and IgA Nephropathy

FSGS

- Primary FSGS generally affects patients in their mid-forties to fifties
- High proteinuria levels in (sub)nephrotic range is hallmark of disease
- Majority of patients relapse, many within 20-36 months

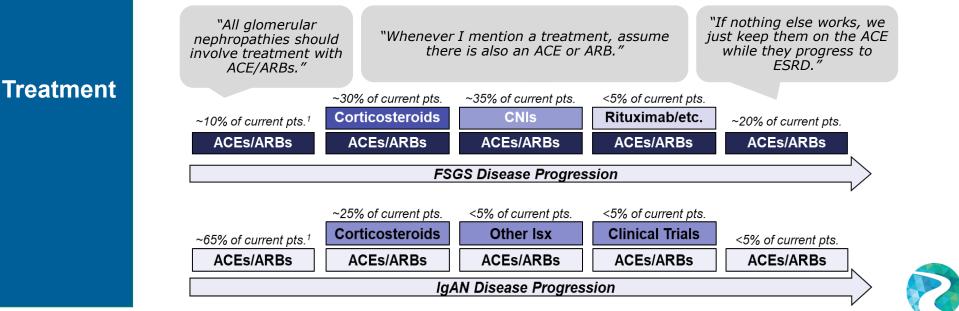
30-60% progress to ESKD with 5-10 years; Recurrent disease develops in 40% of transplant patients

Growing incidence and prevalence

Sources: Gipson et al. *Kidney Int.* (2011); Healthagen 2007 – 2019; Korbet et al., *J Am Soc Nephrol.* (2012); Market Dynamix 2020; USRDS (2019); Rauen et al. *Kidney Int.* (2020); Moranne et al., *Q J Med* (2008) Jarrick et al., *JASN* (2019); Le et al., *Nephrol Dial Transplant* (2011); Selvaskandan et al., *Clin and Exp Nephrol* (2019); proprietary market research

IgAN

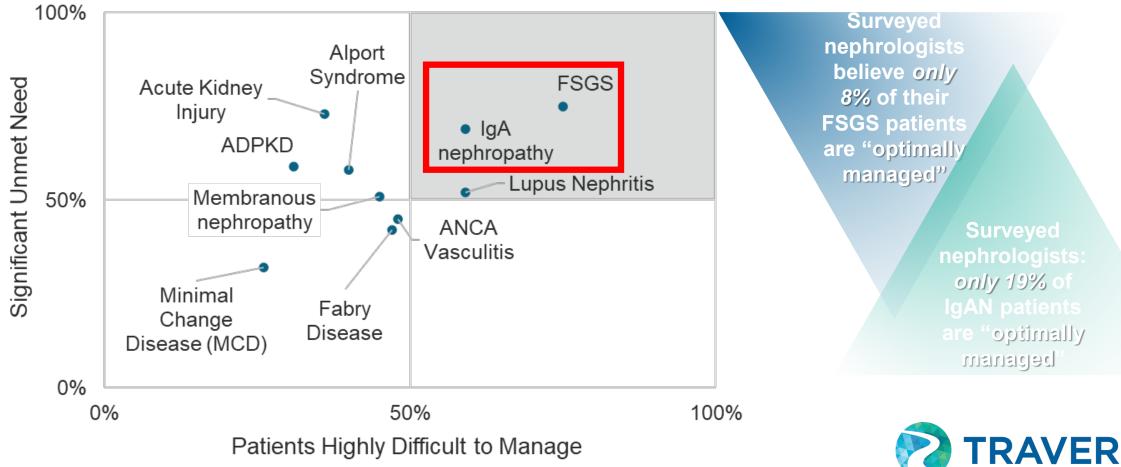
Most commonly reported primary glomerulonephritis


- Affects young adults, often leading to dialysis or transplant in their 40s or early 50s
- ~30-40% of patients have a progressive course to ESKD
- The prognosis is worse for those with persistent proteinuria >1gr/day

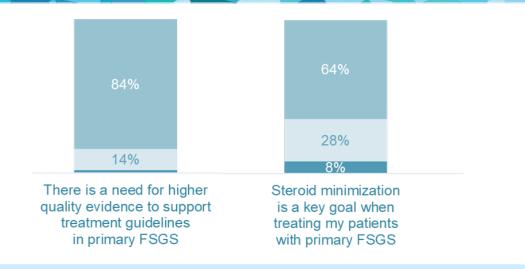
Patient Journey: Referral, Diagnosis and Treatment Path

Referral – ~50% of patients have progressed to CKD3 by the time they are referred to a nephrologist

- **Diagnosis** Glomerular disease diagnosis is based on confirmatory biopsy in ~ 60-90%
 - ACE/ARBs are the backbone therapy for glomerular nephropathies
 - Nephrologists are more likely to use add-on immune suppressant therapies (ISTs) like steroids and calcineurin inhibitors in FSGS vs IgAN



Source: Independent market research, data on file © 2020 Travere Therapeutics, Inc.

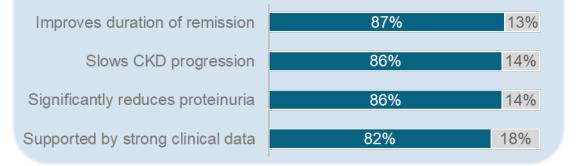

Unmet Needs Vs. Difficulty to Manage Patients

(Percentage respondents)

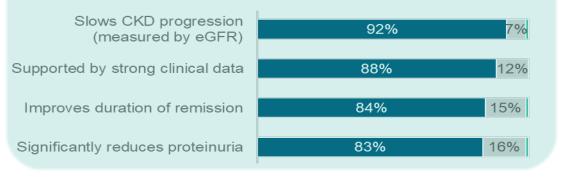
Source: Independent market research, data on file

Need for Evidence-Based Medicine, Addressing Limited Efficacy and Tolerability/Safety Concerns with Current SOC

We put a patient on steroids for six months, and suddenly, a 120 pound woman is now 165 pounds, she has acne, thin hair, and is a borderline diabetic. **These are not benign medicines**. **The problem with all of this is that the initial treatment is steroids...**


These steroids are, at the very minimum, three months, but usually, you are looking at six months to a year. That is the tradeoff. We sit there and say: "Gee, we are sorry to have to do this to you... but **if you want to save your kidneys and stay off dialysis, other parts of your body are going to suffer**." – Nephrologist

- No medicines currently indicated for glomerular diseases FSGS and IgAN
- Current options associated with:
 - limited efficacy
 - safety and tolerability issues
 - limited duration of response
- Nephrologists express a high need for evidence-based medicine that is *efficacious, safe & tolerable and durable*

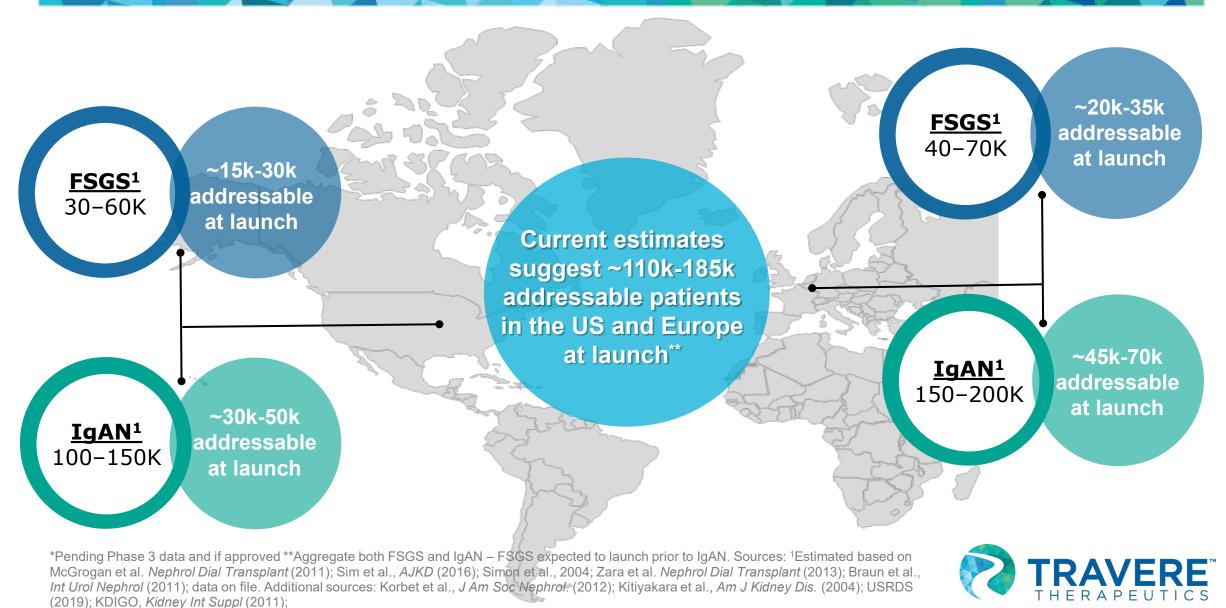


Desired Product Attributes and Perception of Potential Future Sparsentan Product Profile*

Top 4 Most Desired Attributes in a New Pharmacologic Treatment for FSGS (Percent of respondents)

Top 4 Most Desired Attributes in a New Pharmacologic Treatment for IgAN (Percent of respondents)

According to an independent survey with >100 participating nephrologists, sparsentan's potential future product profile* rose to the top of the most desirable pipeline programs for FSGS and IgAN

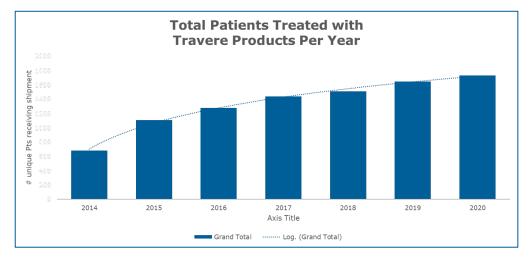

*Pending Phase 3 data and if approved Source: Independent and syndicated market research, data on file

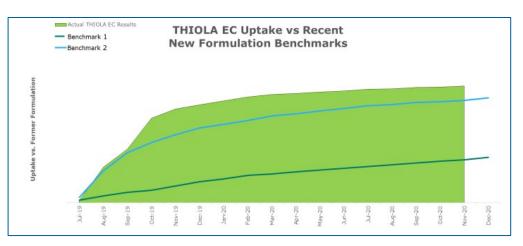
Value Demonstration for Any New FSGS & IgAN product

Innovative MoA	 Lack of recent innovation in treatment of progressive renal diseases highlights need for therapies that can address the injury pathway, and potentially protect the kidney from damage beyond currently available mechanistic approaches
Delay to ESKD	 Slowing progression of disease and delaying ESKD with severe morbidity and mortality impact to patients will be most important clinical outcome Reducing time towards renal replacement therapy and its associated high costs as dialysis and transplantation will be important value drivers
Quality of life	 Improve/maintain quality of life with patient relevant impact, including lower work productivity losses and decrease use of disability benefits
Safety	 New therapies to be tolerable and safe Potential for "steroid sparing" proposition

Epidemiology and Projected Addressable Patient Population at Launch*

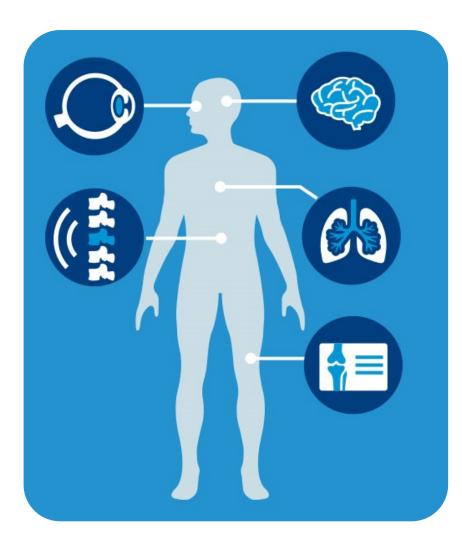
Building on Strength in Preparing for Sparsentan Launch by Utilizing Established Commercial Rare Disease Capabilities and Nephrology Footprint^{*}


- Proven commercial capabilities and infrastructure
 - Organic year-over-year growth for last five years
- Experience planning and executing new product launches in rare disease
 - Recent Thiola EC launch outperformed benchmarks
- Established nephrology network, Patient Hub and expertise
 - Field-force currently calling on ~2,000 nephrologists in US
 - Ability to build upon established customer support services
 - Experienced central distribution capabilities to meet the needs of rare patients


*Pending Phase 3 data and if approved

In Summary

- Nephrologists consider FSGS and IgAN as the most challenging diseases to manage
- There are no medicines indicated for FSGS and IgAN; current options associated with:
 - limited efficacy
 - safety and tolerability issues
 - limited duration of response
- Market research suggests that sparsentan is considered by surveyed nephrologists to have the most desired product profile of product candidates currently in the clinic for FSGS and IgAN
- The high burden-of-disease along with recognized personal and economic impact should allow for strong product value proposition
- Potential to reach a significant number of people living with FSGS and IgAN
 - Current estimates suggest ~110k-185k addressable patients living with FSGS and IgAN in the US and Europe at launch in 2022
- Travere Therapeutics is positioned to be able to successfully bring sparsentan to market^{*} with its proven commercialization capabilities and established network in rare nephrology


*Pending Phase 3 data and if approved

TVT-058 – The First Potential Disease Modifying Therapy for Classical Homocystinuria (HCU)

Bill Rote, PhD – Head of Research and Development

Classical Homocystinuria (HCU) is a Rare Disorder that can Lead to Life-Threatening Complications

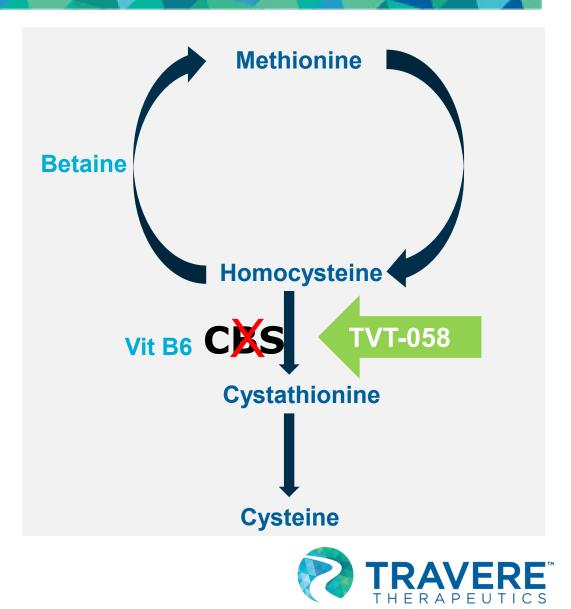
- Rare autosomal recessive disorder caused by mutations in cystathionine beta-synthase (CBS) gene, leading to deficient activity of CBS
 - Metabolic deficiency of CBS leads to bodily buildup of toxic homocysteine (Hcy)
- Toxic levels of Hcy can lead to serious complications for people living with classical HCU
 - Continuous risk of developing life-threatening thrombotic events including heart attack and stroke
 - Other symptoms of classical HCU include dislocation of the eye lens and extreme nearsightedness, skeletal complications including osteoporosis, and developmental delay
- There are no approved treatments that address the underlying genetic cause of HCU
 - Current standard of care includes vitamin B6, low-protein diet + supplements, betaine
- Estimates suggest at least 3,500 patients in US, similar number in Europe

With Largely Ineffective Treatment Options, a Significant Unmet Need Remains for People Living with HCU

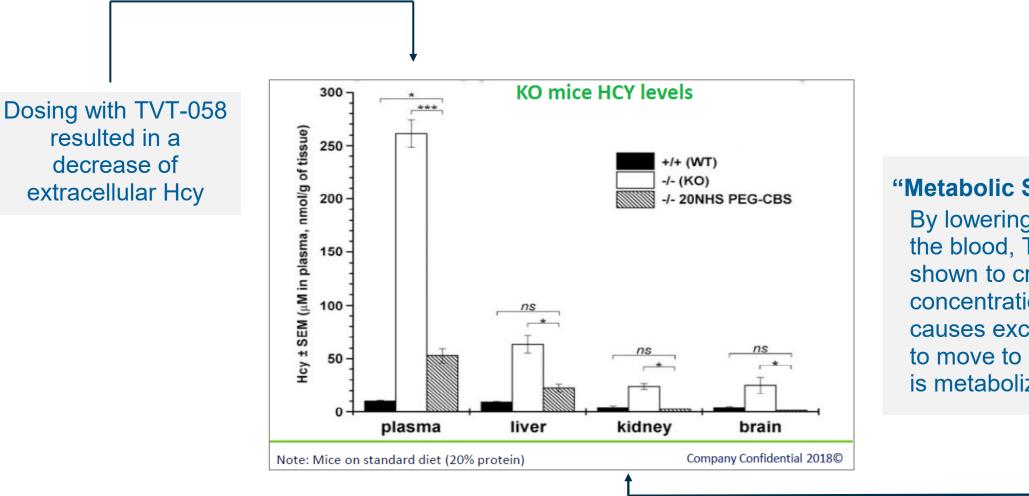
Generally accepted therapeutic goal is to reduce total homocysteine (tHcy) levels but current treatment options rarely sustain reductions in tHcy

Significant challenges for patients to maintain compliance; periods of poor metabolic control have a cumulative deleterious effect

Patients struggle with severe dietary protein restrictions as they age; liberalized diet is amongst top needs



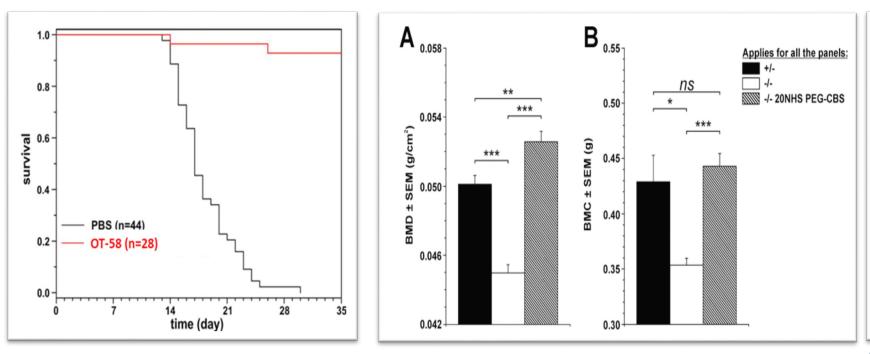
Inability to sustain reductions in Hcy results in life-long risk of thrombotic and cardiac events + cognitive impairment



TVT-058 is a Novel, Investigational, Modified Recombinant CBS Enzyme Therapy

- TVT-058 is a pegylated, modified recombinant truncated human enzyme, designed to address the underlying genetic cause of HCU
 - Mechanism of action is pathology agnostic
- TVT-058 is administered subcutaneously and designed to be active and stable in plasma unlike native CBS
- Designed to introduce the CBS enzyme into circulation and reduce intracellular and plasma Hcy levels
- TVT-058 has been granted multiple regulatory designations:
 - FDA Rare Pediatric Disease designation
 - FDA Fast Track designation
 - Orphan Drug designation in the US and Europe.

Administration of TVT-058 Resulted in Up To 70-90% Reduction of Plasma and Tissue Hcy Levels in Mouse Models


"Metabolic Sink"


By lowering the Hcy levels in the blood, TVT-058 has been shown to create a concentration gradient that causes excess Hcy in tissues to move to plasma, where it is metabolized

Source: Majtan T. et al., FASEB J. 2017; 31(12):5495-5506

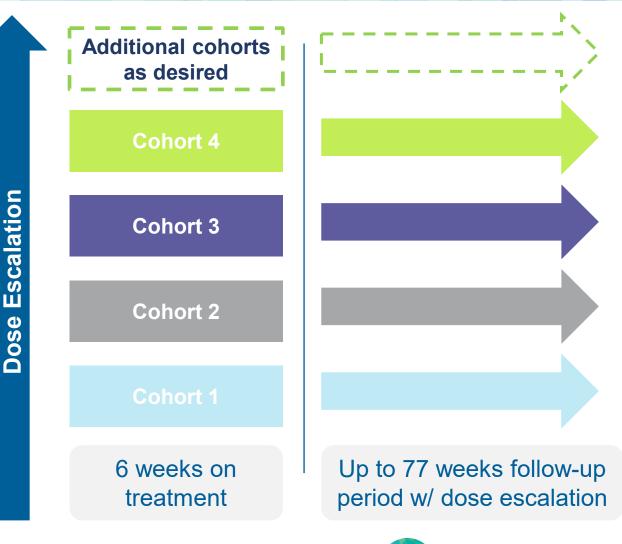
Treatment with TVT-058 Appeared to Prolong Survival, Prevent Osteoporosis and Rescue Ocular Structure in Mouse Models

Negative Control

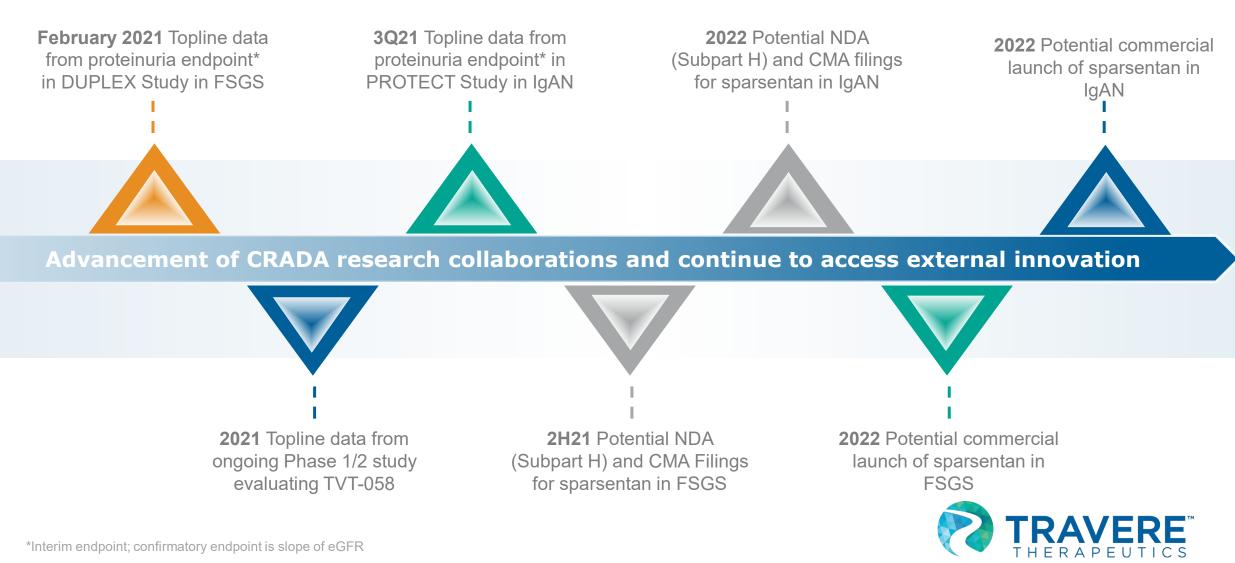
Untreated

TVT-058 treated

Treatment with TVT-058 appeared to prolong survival in KO mouse models¹


Untreated KO mouse models resulted in significant liver damage and death within 20-30 days Early treatment with TVT-058 appeared to prevent loss of bone mineralization and fat content in KO mice¹ Treatment with TVT-058 appeared to preserve fiber integrity and prevent the degradation of the structure that secures the lens in the eye²

Source: 1. Majtan T. et al., *FASEB J.* 2017;31(12):5495-5506; 2. Majtan, T et al., *Mol Ther.* 2018;26(3):834-844 © 2020 Travere Therapeutics, Inc.


TVT-058 is Advancing in Ongoing Phase 1/2 Clinical Proof-of-Concept Study in HCU

- TVT-058 is advancing in a Phase 1/2 double blind, randomized, placebo-controlled study
- Cohorts are enrolled in a dose escalating fashion; following completion of each cohort, unblinded safety data are reviewed by DMC prior to activating next cohort
- Primary endpoint
 - Incidence of treatment-emergent adverse events
- Secondary endpoints
 - Total plasma homocysteine (tHcy)
 - Cognitive function changes
 - Ocular assessment
 - Bone mineral density
 - Patient QoL scales: Neuro-QoL, EQ-5D & SF-36

Path to Potential Breakthrough Growth for Travere Therapeutics

